31 research outputs found

    Resting Regulatory CD4 T Cells: A Site of HIV Persistence in Patients on Long-Term Effective Antiretroviral Therapy

    Get PDF
    BACKGROUND: In HIV-infected patients on long-term HAART, virus persistence in resting long-lived CD4 T cells is a major barrier to curing the infection. Cell quiescence, by favouring HIV latency, reduces the risk of recognition and cell destruction by cytotoxic lymphocytes. Several cell-activation-based approaches have been proposed to disrupt cell quiescence and then virus latency, but these approaches have not eradicated the virus. CD4+CD25+ regulatory T cells (Tregs) are a CD4+ T-cell subset with particular activation properties. We investigated the role of these cells in virus persistence in patients on long-term HAART. METHODOLOGY/PRINCIPAL FINDINGS: We found evidence of infection of resting Tregs (HLADR(-)CD69(-)CD25(hi)FoxP3+CD4+ T cells) purified from patients on prolonged HAART. HIV DNA harbouring cells appear more abundant in the Treg subset than in non-Tregs. The half-life of the Treg reservoir was estimated at 20 months. Since Tregs from patients on prolonged HAART showed hyporesponsiveness to cell activation and inhibition of HIV-specific cytotoxic T lymphocyte-related functions upon activation, therapeutics targeting cell quiescence to induce virus expression may not be appropriate for purging the Treg reservoir. CONCLUSIONS: Our results identify Tregs as a particular compartment within the latent reservoir that may require a specific approach for its purging

    A megaxion at 750 GeV as a first hint of low scale string theory

    Full text link
    Journal of High Energy Physics 2016.7 (2016): 021 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Low scale string models naturally have axion-like pseudoscalars which couple directly to gluons and photons (but not W’s) at tree level. We show how they typically get tree level masses in the presence of closed string fluxes, consistent with the axion discrete gauge symmetry, in a way akin of the axion monodromy of string inflation and relaxion models. We discuss the possibility that the hints for a resonance at 750 GeV recently reported at ATLAS and CMS could correspond to such a heavy axion state (megaxion). Adjusting the production rate and branching ratios suggest the string scale to be of order Ms ≈ 7–104 TeV, depending on the compactification geometry. If this interpretation was correct, one extra Z’ gauge boson could be produced before reaching the string threshold at LHC and future collidersThis work is partially supported by the grants FPA2012-32828 and FPA2015-65929-P from the MINECO, the ERC Advanced Grant SPLE under contract ERC-2012-ADG-20120216-320421, the Consolider-Ingenio 2010 programme under grant MULTIDARK CSD2009-00064 and the grant SEV-2012-0249 of the “Centro de Excelencia Severo Ochoa” Programm

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    MyD88 activation in cardiomyocytes contributes to the heart immune response to acute Trypanosoma cruzi infection with no effect on local parasite control

    Get PDF
    Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection

    Infiltrating regulatory T cell numbers is not a factor to predict patient's survival in oesophageal squamous cell carcinoma

    Get PDF
    CD4/8 status has been previously reported to be a critical factor in the prognosis of oesophageal squamous cell carcinoma (OSCC). In the current study, we investigated the effect of regulatory T cells (Treg; Foxp3; lymphocytes) on the status of CD4+ and CD8+ T cells in 122 patients with OSCC. Immunohistochemical analysis of Treg was performed using an antibody against Foxp3. The survival rate for low Foxp3 patients was significantly lower than for high Foxp3 patients (P=0.0028 by log-rank test), but Foxp3 status did not significantly correlate with prognosis in CD4/8(+/+) patients or CD4/8(+/-) or (-/+) patients (P=0.5185 and 0.8479, respectively, by log-rank test). We also found that Foxp3 status correlated with CD4/8 status (P=0.0002 by χ2 test) and that the variance of CD8/CD4 ratio in patients with low Foxp3 was larger than in patients with high Foxp3 (P<0.0001 by F-test). Thus, the results do not support the idea that Treg suppress anti-tumour immunity in patients with OSCC. Rather, the CD8/CD4 ratio and CD4/8 status appear to be critical factors in anti-tumour immunity. Furthermore, Treg numbers correlate with both the CD8/CD4 ratio and the CD4/8 status, suggesting that Treg number is not a factor to predict patient's survival in OSCC

    MiR-23 similar to 27 similar to 24-mediated control of humoral immunity reveals a TOX-driven regulatory circuit in follicular helper T cell differentiation

    No full text
    Follicular helper T (TFH) cells are essential for generating protective humoral immunity. To date, microRNAs (miRNAs) have emerged as important players in regulating TFH cell biology. Here, we show that loss of miR-23~27~24 clusters in T cells resulted in elevated TFH cell frequencies upon different immune challenges, whereas overexpression of this miRNA family led to reduced TFH cell responses. Mechanistically, miR-23~27~24 clusters coordinately control TFH cells through targeting a network of genes that are crucial for TFH cell biology. Among them, thymocyte selection-associated HMG-box protein (TOX) was identified as a central transcription regulator in TFH cell development. TOX is highly up-regulated in both mouse and human TFH cells in a BCL6-dependent manner. In turn, TOX promotes the expression of multiple molecules that play critical roles in TFH cell differentiation and function. Collectively, our results establish a key miRNA regulon that maintains optimal TFH cell responses for resultant humoral immunity
    corecore