35 research outputs found

    Redox modifications of cysteine-containing proteins, cell cycle arrest and translation inhibition: Involvement in vitamin C-induced breast cancer cell death

    Get PDF
    International audienceVitamin C (VitC) possesses pro-oxidant properties at high pharmacologic concentrations which favor re-purposing VitC as an anti-cancer therapeutic agent. However, redox-based anticancer properties of VitC are yet partially understood. We examined the difference between the reduced and oxidized forms of VitC, ascorbic acid (AA) and dehydroascorbic acid (DHA), in terms of cytotoxicity and redox mechanisms toward breast cancer cells. Our data showed that AA displayed higher cytotoxicity towards triple-negative breast cancer (TNBC) cell lines in vitro than DHA. AA exhibited a similar cytotoxicity on non-TNBC cells, while only a minor detrimental effect on noncancerous cells. Using MDA-MB-231, a representative TNBC cell line, we observed that AA-and DHA-induced cytotoxicity were linked to cellular redox-state alterations. Hydrogen peroxide (H 2 O 2) accumulation in the extracellular medium and in different intracellular compartments, and to a lesser degree, intracellular glu-tathione oxidation, played a key role in AA-induced cytotoxicity. In contrast, DHA affected glutathione oxidation and had less cytotoxicity. A "redoxome" approach revealed that AA treatment altered the redox state of key antioxidants and a number of cysteine-containing proteins including many nucleic acid binding proteins and proteins involved in RNA and DNA metabolisms and in energetic processes. We showed that cell cycle arrest and translation inhibition were associated with AA-induced cytotoxicity. Finally, bioinformatics analysis and biological experiments identified that peroxiredoxin 1 (PRDX1) expression levels correlated with AA differential cytotoxicity in breast cancer cells, suggesting a potential predictive value of PRDX1. This study provides insight into the redox-based mechanisms of VitC anticancer activity, indicating that pharmacologic doses of VitC and VitC-based rational drug combinations could be novel therapeutic opportunities for triple-negative breast cancer

    Mechanisms of iron and copper–frataxin interactions

    No full text
    International audienc

    In Vitro interaction between yeast frataxin and superoxide dismutases: Influence of mitochondrial metals

    No full text
    International audienceBackground: Friedreich's ataxia results from a decreased expression of the nuclear gene encoding the mitochondrial protein, frataxin. Frataxin participates in the biosynthesis of iron-sulfur clusters and heme cofactors, as well as in iron storage and protection against oxidative stress. How frataxin interacts with the antioxidant defence components is poorly understood.Methods: Therefore, we have investigated by kinetic, thermodynamic and modelling approaches the molecular interactions between yeast frataxin (Yfh1) and superoxide dismutases, Sod1 and Sod2, and the influence of Yfh1 on their enzymatic activities.Results: Yfh1 interacts with cytosolic Sod1 with a dissociation constant, Kd = 1.3 ± 0.3 μM, in two kinetic steps. The first step occurs in the 200 ms range and corresponds to the Yfh1-Sod1 interaction, whereas the second is slow and is assumed to be a change in the conformation of the protein-protein adduct. Furthermore, computational investigations confirm the stability of the Yfh1-Sod1 complex. Yfh1 forms two protein complexes with mitochondrial Sod2 with 1:1 and 2:1 Yfh1/Sod2 stoichiometry (Kd1 = 1.05 ± 0.05 and Kd2 = 6.6 ± 0.1 μM). Furthermore, Yfh1 increases the enzymatic activity of Sod1 while slightly affecting that of Sod2. Finally, the stabilities of the protein-protein adducts and the effect of Yfh1 on superoxide dismutase activities depend on the nature of the mitochondrial metal.Conclusions: This work confirms the participation of Yfh1 in cellular defence against oxidative stress

    A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata

    Get PDF
    International audienceThe yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the crossroads between redox homeostasis, oxygen consumption, and iron metabolism

    Novel Insights into Redox-Based Mechanisms for Auranofin-Induced Rapid Cancer Cell Death

    No full text
    International audienceAuranofin (Ridaura®, AUF) is a gold complex originally approved as an antirheumatic agent that has emerged as a potential candidate for multiple repurposed therapies. The best-studied anticancer mechanism of AUF is the inhibition of thioredoxin reductase (TrxR). However, a number of reports indicate a more complex and multifaceted mode of action for AUF that could be cancer cell type- and dose-dependent. In this study, we observed that AUF displayed variable cytotoxicity in five triple-negative breast cancer cell lines. Using representative MDA-MB-231 cells treated with moderate and cytotoxic doses of AUF, we evidenced that an AUF-mediated TrxR inhibition alone may not be sufficient to induce cell death. Cytotoxic doses of AUF elicited rapid and drastic intracellular oxidative stress affecting the mitochondria, cytoplasm and nucleus. A “redoxome” proteomics investigation revealed that a short treatment with a cytotoxic dose AUF altered the redox state of a number of cysteines-containing proteins, pointing out that the cell proliferation/cell division/cell cycle and cell–cell adhesion/cytoskeleton structure were the mostly affected pathways. Experimentally, AUF treatment triggered a dose-dependent S-phase arrest and a rapid disintegration of the actin cytoskeleton structure. Our study shows a new spectrum of AUF-induced early effects and should provide novel insights into the complex redox-based mechanisms of this promising anticancer molecule.
    corecore