1,389 research outputs found

    Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release

    Full text link
    With the goal of investigating the degree to which theMIR luminosity in theWidefield Infrared Survey Explorer (WISE) traces the SFR, we analyze 3.4, 4.6, 12 and 22 {\mu}m data in a sample of {\guillemotright} 140,000 star-forming galaxies or star-forming regions covering a wide range in metallicity 7.66 < 12 + log(O/H) < 9.46, with redshift z < 0.4. These star-forming galaxies or star-forming regions are selected by matching the WISE Preliminary Release Catalog with the star-forming galaxy Catalog in SDSS DR8 provided by JHU/MPA 1.We study the relationship between the luminosity at 3.4, 4.6, 12 and 22 {\mu}m from WISE and H\alpha luminosity in SDSS DR8. From these comparisons, we derive reference SFR indicators for use in our analysis. Linear correlations between SFR and the 3.4, 4.6, 12 and 22 {\mu}m luminosity are found, and calibrations of SFRs based on L(3.4), L(4.6), L(12) and L(22) are proposed. The calibrations hold for galaxies with verified spectral observations. The dispersion in the relation between 3.4, 4.6, 12 and 22 {\mu}m luminosity and SFR relates to the galaxy's properties, such as 4000 {\deg}A break and galaxy color.Comment: 10 pages, 3 figure

    Total Infrared Luminosity Estimation of Resolved and Unresolved Galaxies

    Get PDF
    The total infrared (TIR) luminosity from galaxies can be used to examine both star formation and dust physics. We provide here new relations to estimate the TIR luminosity from various Spitzer bands, in particular from the 8 micron and 24 micron bands. To do so, we use 45" subregions within a subsample of nearby face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) that have known oxygen abundances as well as integrated galaxy data from the SINGS, the Local Volume Legacy Survey (LVL) and Engelbracht et al. (2008) samples. Taking into account the oxygen abundances of the subregions, the star formation rate intensity, and the relative emission of the polycyclic aromatic hydrocarbons at 8 micron, the warm dust at 24 micron and the cold dust at 70 micron and 160 micron we derive new relations to estimate the TIR luminosity from just one or two of the Spitzer bands. We also show that the metallicity and the star formation intensity must be taken into account when estimating the TIR luminosity from two wave bands, especially when data longward of 24 micron are not available.Comment: 11 pages, 10 figures, accepted for publication in Ap

    FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705

    Get PDF
    We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy NGC 1705. These data allow us for the first time to probe the coronal-phase gas (T = 10E5 to 10E6 K) that may dominate the radiative cooling of the supernova-heated ISM and thereby determine the dynamical evolution of starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80 km/s) OVI absorption-line arising in the previously-known galactic outflow. The properties of the OVI absorption are inconsistent with the standard superbubble model in which this gas arises in a conductive interface inside the outer shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing as hot gas rushes out through fissures in the fragmenting shell of cool gas. As the coronal gas cools radiatively, it can naturally produce the observed OVI column density and outflow speed. The OVI data show that the cooling rate in the coronal-phase gas is less than about 10% of the supernova heating rate. Since the X-ray luminosity from hotter gas is even smaller, we conclude that radiative losses are insignificant. The outflow should be able to vent its metals and kinetic energy out of the galaxy. This process has potentially important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press

    CIRPASS near-infrared integral-field spectroscopy of massive star clusters in the starburst galaxy NGC 1140

    Get PDF
    [ABRIDGED] We analyse near-infrared integral field spectroscopy of the central starburst region of NGC 1140, obtained at the Gemini-South telescope equipped with CIRPASS. Our ~1.45-1.67 um wavelength coverage includes the bright [Fe II] emission line, as well as high-order Brackett (hydrogen) lines. While strong [Fe II] emission, thought to originate in the thermal shocks associated with supernova remnants, is found throughout the galaxy, both Br 12-4 and Br 14-4 emission, and weak CO(6,3) absorption, is predominantly associated with the northern starburst region. The Brackett lines originate from recombination processes occurring on smaller scales in (young) HII regions. The time-scale associated with strong [Fe II] emission implies that most of the recent star-formation activity in NGC 1140 was induced in the past 35-55 Myr. Based on the spatial distributions of the [Fe II] versus Brackett line emission, we conclude that a galaxy-wide starburst was induced several tens of Myr ago, with more recent starburst activity concentrated around the northern starburst region. This scenario is (provisionally) confirmed by our analysis of the spectral energy distributions of the compact, young massive star clusters (YMCs) detected in new and archival broad-band HST images. The YMC ages in NGC 1140 are all <= 20 Myr, consistent with independently determined estimates of the galaxy's starburst age, while there appears to be an age difference between the northern and southern YMC complexes in the sense expected from our CIRPASS analysis. Our photometric mass estimates of the NGC 1140 YMCs, likely upper limits, are comparable to those of the highest-mass Galactic globular clusters and to spectroscopically confirmed masses of (compact) YMCs in other starburst galaxies.Comment: 16 pages LaTeX, incl. 6 postscript figures; accepted for publication in MNRA

    On the Escape of Ionizing Radiation from Starbursts

    Full text link
    Far-ultraviolet spectra obtained with FUSEFUSE show that the strong CIIλCII\lambda1036 interstellar absorption-line is essentially black in five of the UV-brightest local starburst galaxies. Since the opacity of the neutral ISM below the Lyman-edge will be significantly larger than in the CIICII line, these data provide strong constraints on the escape of ionizing radiation from these starbursts. Interpreted as a a uniform absorbing slab, the implied optical depth at the Lyman edge is huge (τ0≥102\tau_0 \geq 10^2). Alternatively, the areal covering factor of opaque material is typically ≥\geq 94%. Thus, the fraction of ionizing stellar photons that escape the ISM of each galaxy is small: our conservative estimates typically yield fesc≤6f_{esc} \leq 6%. Inclusion of extinction due to dust will further decrease fescf_{esc}. An analogous analysis of the rest-UV spectrum of the star-forming galaxy MS1512−CB58MS 1512-CB58 at zz =2.7 leads to similar constraints on fescf_{esc}. These new results agree with the constraints provided by direct observations below the Lyman edge in a few other local starbursts. However, they differ from the recently reported properties of star-forming galaxies at z≥z \geq 3. We assess the idea that the strong galactic winds seen in many powerful starbursts clear channels through their neutral ISM. We show empirically that such outflows may be a necessary - but not sufficient - part of the process for creating a relatively porous ISM. We note that observations will soon document the cosmic evolution in the contribution of star-forming galaxies to the metagalactic ionizing background, with important implications for the evolution of the IGM.Comment: 17 pages; ApJ, in pres
    • …
    corecore