132 research outputs found

    CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype

    Get PDF
    Background: Intrahepatic Cholangiocarcinoma (iCCA) is characterized by a strong stromal reaction playing a role in tumor progression. Thymus cell antigen 1 (THY1), also called Cluster of Differentiation 90 (CD90), is a key regulator of cell–cell and cell–matrix interaction. In iCCA, CD90 has been reported to be associated with a poor prognosis. In an iCCA PDX model, we recently found that CD90 was downregulated in mice treated with the Notch γ-secretase inhibitor Crenigacestat. The study aims to investigate the role of CD90 in relation to the NOTCH pathway. Methods: THY1/CD90 gene and protein expression was evaluated in human iCCA tissues and xenograft models by qRT-PCR, immunohistochemistry, and immunofluorescence. Notch1 inhibition was achieved by siRNA. THY1/CD90 functions were investigated in xenograft models built with HuCCT1 and KKU-M213 cell lines, engineered to overexpress or knockdown THY1, respectively. Results: CD90 co-localized with EPCAM, showing its epithelial origin. In vitro, NOTCH1 silencing triggered HES1 and THY1 down-regulation. RBPJ, a critical transcriptional regulator of NOTCH signaling, exhibited putative binding sites on the THY1 promoter and bound to the latter, implying CD90 as a downstream NOTCH pathway effector. In vivo, Crenigacestat suppressed iCCA growth and reduced CD90 expression in the PDX model. In the xenograft model, Crenigacestat inhibited tumor growth of HuCCT1 cells transfected to overexpress CD90 and KKU-M213 cells constitutively expressing high levels of CD90, while not affecting the growth of HuCCT1 control cells and KKU-M213 depleted of CD90. In an iCCA cohort, patients with higher expression levels of NOTCH1/HES1/THY1 displayed a significantly shorter survival. Conclusions: iCCA patients with higher NOTCH1/HES1/THY1 expression have the worst prognosis, but they are more likely to benefit from Notch signaling inhibition. These findings represent the scientific rationale for testing NOTCH1 inhibitors in clinical trials, taking the first step toward precision medicine for iCCA

    Jagged 1 is a major Notch ligand along cholangiocarcinoma development in mice and humans

    Get PDF
    Intrahepatic cholangiocarcinoma (ICC) is a rare yet deadly malignancy with limited treatment options. Activation of the Notch signalling cascade has been implicated in cholangiocarcinogenesis. However, while several studies focused on the Notch receptors required for ICC development, little is known about the upstream inducers responsible for their activation. Here, we show that the Jagged 1 (Jag1) ligand is almost ubiquitously upregulated in human ICC samples when compared with corresponding non-tumorous counterparts. Furthermore, we found that while overexpression of Jag1 alone does not lead to liver tumour development, overexpression of Jag1 synergizes with activated AKT signalling to promote liver carcinogenesis in AKT/Jag1 mice. Histologically, tumours consisted exclusively of ICC, with hepatocellular tumours not occurring in AKT/Jag1 mice. Furthermore, tumours from AKT/Jag1 mice exhibited extensive desmoplastic reaction, an important feature of human ICC. At the molecular level, we found that both AKT/mTOR and Notch cascades are activated in AKT/Jag1 ICC tissues, and that the Notch signalling is necessary for ICC development in AKT/Jag1 mice. In human ICC cell lines, silencing of Jag1 via specific small interfering RNA reduces proliferation and increases apoptosis. Finally, combined inhibition of AKT and Notch pathways is highly detrimental for the in vitro growth of ICC cell lines. In summary, our study demonstrates that Jag1 is an important upstream inducer of the Notch signalling in human and mouse ICC. Targeting Jag1 might represent a novel therapeutic strategy for the treatment of this deadly disease

    Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure

    Get PDF
    Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002)

    Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development

    Get PDF
    The mechanisms controlling mammalian organ size have long been a source of fascination for biologists. These controls are needed to both ensure the integrity of the body plan and to restrict inappropriate proliferation that could lead to cancer. Regulation of liver size is of particular interest inasmuch as this organ maintains the capacity for regeneration throughout life, and is able to regain precisely its original mass after partial surgical resection. Recent studies using genetically engineered mouse strains have shed new light on this problem; the Hippo signalling pathway, first elucidated as a regulator of organ size in Drosophila, has been identified as dominant determinant of liver growth. Defects in this pathway in mouse liver lead to sustained liver overgrowth and the eventual development of both major types of liver cancer, hepatocellular carcinoma and cholangiocarcinoma. In this review, we discuss the role of Hippo signalling in liver biology and the contribution of this pathway to liver cancer in humans

    Epigenetic inactivation of the NORE1 gene correlates with malignant progression of colorectal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NORE1 (RASSF5) is a newly described member of the RASSF family with Ras effector function. <it>NORE1 </it>expression is frequently inactivated by aberrant promoter hypermethylation in many human cancers, suggesting that NORE1 might be a putative tumor suppressor. However, expression and mutation status of <it>NORE1 </it>and its implication in colorectal tumorigenesis has not been evaluated.</p> <p>Methods</p> <p>Expression, mutation, and methylation status of <it>NORE1A </it>and <it>NORE1B </it>in 10 cancer cell lines and 80 primary tumors were characterized by quantitative PCR, SSCP, and bisulfite DNA sequencing analyses. Effect of NORE1A and NORE1B expression on tumor cell growth was evaluated using cell number counting, flow cytometry, and colony formation assays.</p> <p>Results</p> <p>Expression of <it>NORE1A </it>and <it>NORE1B </it>transcript was easily detectable in all normal colonic epithelial tissues, but substantially decreased in 7 (70%) and 4 (40%) of 10 cancer cell lines and 31 (38.8%) and 25 (31.3%) of 80 primary carcinoma tissues, respectively. Moreover, 46 (57.6%) and 38 (47.5%) of 80 matched tissue sets exhibited tumor-specific reduction of <it>NORE1A </it>and <it>NORE1B</it>, respectively. Abnormal reduction of <it>NORE1 </it>was more commonly observed in advanced stage and high grade tumors compared to early and low grade tumors. While somatic mutations of the gene were not identified, its expression was re-activated in all low expressor cells after treatment with the demethylating agent 5-aza-dC. Bisulfite DNA sequencing analysis of 31 CpG sites within the promoter region demonstrated that abnormal reduction of <it>NORE1A </it>is tightly associated with promoter CpG sites hypermethylation. Moreover, transient expression and siRNA-mediated knockdown assays revealed that both NORE1A and NORE1B decrease cellular growth and colony forming ability of tumor cells and enhance tumor cell response to apoptotic stress.</p> <p><b>Conclusion</b></p> <p>Our data indicate that epigenetic inactivation of <it>NORE1 </it>due to aberrant promoter hypermethylation is a frequent event in colorectal tumorigenesis and might be implicated in the malignant progression of colorectal tumors.</p

    Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma.

    Get PDF
    Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA

    Expert consensus document:Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)

    Get PDF
    Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted

    Chondrocalcinosis: A morphofunctional study of crystal deposition in mechanically stressed shoulder soft tissues

    No full text
    Introduction: Chondrocalcinosis is a pathological condition characterized by the presence of calcium pyrophosphate dihydrate (CPPD) crystal deposition in the soft tissues. Even if knee articular cartilage is the most involved anatomical area, different kind of tissue and joint can be affected by this disorder. Methods: The aim of this manuscript is to analyze at histological and ultrastructural level the crystal deposition in shoulder soft tissue subjected to mechanical stress of patients affected by CPPD disease. Moreover, the cellular behavior in the same specimens has been investigated by means of transmission electron microscopy at variable distances from crystal deposits. Results: An interesting relationship between CPPD and cellular impairment appears in humeral articular cartilage, joint capsule and long head of biceps brachii tendon sheath, where respectively chondrocytes and fibroblasts, close to crystal deposits, reveal numerous cell damages, such as chromatin condensation, dilation of organelles orcell membrane rupture. Conclusion: Considering that cells far to the crystals are healthy, their behavior appears to be different from that of neighboring cells, then our preliminary results suggest a possible cause-effect relationship between events. Level of evidence: basic science study
    corecore