226 research outputs found

    Functionalization Pattern of Graphene Oxide Sheets Controls Entry or Produces Lipid Turmoil in Phospholipid Membranes

    Get PDF
    Molecular dynamics, coarse-grained to the level of hydrophobic and hydrophilic interactions, shows that graphene oxide sheets, GOSs, can pierce through the phospholipid membrane and navigate the double layer only if the hydrophilic groups are randomly dispersed in the structure. Their behavior resembles that found in similar calculations for pristine graphene sheets. If the oxidation is located at the edge of the sheets, GOSs hover over the membrane and trigger a major reorganization of the lipids. The reorganization is the largest when the radius of the edge-functionalized sheet is similar to the length of the lipophilic chain of the lipids. In the reorganization, the heads of the lipid chains form dynamical structures that pictorially resemble the swirl of water flowing down a drain. All effects maximize the interaction between hydrophobic moieties on the one hand and lipophilic fragments on the other and are accompanied by a large number of lipid flip-flops. Possible biological consequences are discussed

    Two Approaches in Computer Simulation of the MFM-images

    Get PDF
    Two approaches to the interpretation of the data of magnetic force microscopy are considered. The first approach involves the reconstruction of the magnetization distribution in the researched samples on the base of an assumption about the magnetic state and the subsequent numerical magnetic force microscopy experiment. The second is related to an experimental data processing

    C60bioconjugation with proteins: Towards a palette of carriers for all pH ranges

    Get PDF
    The high hydrophobicity of fullerenes and the resulting formation of aggregates in aqueous solutions hamper the possibility of their exploitation in many technological applications. Noncovalent bioconjugation of fullerenes with proteins is an emerging approach for their dispersion in aqueous media. Contrary to covalent functionalization, bioconjugation preserves the physicochemical properties of the carbon nanostructure. The unique photophysical and photochemical properties of fullerenes are then fully accessible for applications in nanomedicine, sensoristic, biocatalysis and materials science fields. However, proteins are not universal carriers. Their stability depends on the biological conditions for which they have evolved. Here we present two model systems based on pepsin and trypsin. These proteins have opposite net charge at physiological pH. They recognize and disperse C60in water. UV-Vis spectroscopy, zeta-potential and atomic force microscopy analysis demonstrates that the hybrids are well dispersed and stable in a wide range of pH's and ionic strengths. A previously validated modelling approach identifies the protein-binding pocket involved in the interaction with C60. Computational predictions, combined with experimental investigations, provide powerful tools to design tailor-made C60@proteins bioconjugates for specific applications

    Fullerenes against COVID-19: Repurposing C60 and C70 to Clog the Active Site of SARS-CoV-2 Protease

    Get PDF
    The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, M-pro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C-60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, M-pro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C-70 as an innovative scaffold for the inhibition of SARS-CoV-2 M-pro. At odds with masitinib, both C-60 and C-70 interact more strongly with SARS-CoV-2 M-pro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to M-pro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding

    Engineering the Fullerene-protein Interface by Computational Design: The Sum is More than its Parts

    Get PDF
    Of all the amino acids, the surface of \u3c0-electron conjugated carbon nanoparticles has the largest affinity for tryptophan, followed by tyrosine, phenylalanine, and histidine. In order to increase the binding of a protein to a fullerene, it should suffice to mutate a residue of the site that binds to the fullerene to tryptophan, Trp. Computational chemistry shows that this intuitive approach is fraught with danger. Mutation of a binding residue to Trp may even destabilize the binding because of the complicated balance between van der Waals, polar and non-polar solvation interactions

    Biocompatible and Light-Penetrating Hydrogels for Water Decontamination

    Get PDF
    Solar light-activated photocatalyst nanoparticles (NPs) are promising environment-friendly low cost tools for water decontamination, but their dispersion in the environment must be minimized. Here, we propose the incorporation of TiO2-NPs (also in combination with graphene platelets) into highly biocompatible hydrogels as a promising approach for the production of photoactive materials for water treatment. We also propose a convenient fluorescence-based method to investigate the hydrogel photocatalytic activity in real time with a conventional fluorimeter. Kinetics analysis of the degradation profile of a target fluorescent model pollutant demonstrates that fast degradation occurs in the matrix bulk. Fluorescence anisotropy proved that small pollutant molecules diffuse freely in the hydrogel. Rheological and scanning electron microscopy characterization showed that the TiO2-NP incorporation does not significantly alter the hydrogel mechanical and morphological properties

    Isotope Exchange in Disulfur Monoxide-Water Charged Complexes: A Mass Spectrometric and Computational Study

    Get PDF
    A hitherto unknown, isotope-exchange reaction is studied in ionized gaseous mixtures containing disulfur monoxide and water. The kinetics, mechanism, and intermediate of the reaction are investigated by experimental and theoretical methods. The reactivity of the S2O˙+ cation with water is investigated under a wide range of pressures ranging from 10−7 to 10−4 Torr, by FT-ICR, TQ, and high-resolution CAD mass spectrometry. In the high-pressure limit the reaction proves to be a route to strongly bound sulfur-containing species

    Deciphering the Reactive Pathways of Competitive Reactions inside Carbon Nanotubes

    Get PDF
    : Nanoscale control of chemical reactivity, manipulation of reaction pathways, and ultimately driving the outcome of chemical reactions are quickly becoming reality. A variety of tools are concurring to establish such capability. The confinement of guest molecules inside nanoreactors, such as the hollow nanostructures of carbon nanotubes (CNTs), is a straightforward and highly fascinating approach. It mechanically hinders some molecular movements but also decreases the free energy of translation of the system with respect to that of a macroscopic solution. Here, we examined, at the quantum mechanics/molecular mechanics (QM/MM) level, the effect of confinement inside CNTs on nucleophilic substitution (SN2) and elimination (syn-E2 and anti-E2) using as a model system the reaction between ethyl chloride and chloride. Our results show that the three reaction mechanisms are kinetically and thermodynamically affected by the CNT host. The size of the nanoreactor, i.e., the CNT diameter, represents the key factor to control the energy profiles of the reactions. A careful analysis of the interactions between the CNTs and the reactive system allowed us to identify the driving force of the catalytic process. The electrostatic term controls the reaction kinetics in the SN2 and syn/anti-E2 reactions. The van der Waals interactions play an important role in the stabilization of the product of the elimination process

    Allylic and Allenylic Dearomatization of Indoles promoted by Graphene Oxide via Covalent Grafting Activation Mode

    Get PDF
    The site‐selective allylative and allenylative dearomatization of indoles with alcohols is performed under carbocatalytic regime in the presence of graphene oxide (GO, 10 wt% loading) as the promoter. Metal‐free conditions, absence of stoichiometric additive, environmentally friendly conditions (H2O/CH3CN, 55 \ub0C, 6 h), broad substrate scope (33 examples, yield up to 92%) and excellent site‐ and stereoselectivity characterize the present methodology. Moreover, a covalent activation model exerted by GO functionalities was corroborated by spectroscopic, experimental and computational evidences. Recovering and regeneration of the GO catalyst via simple acidic treatment was also documented

    Graphene Materials Strengthen Aqueous Polyurethane Adhesives

    Get PDF
    Carboxyl-functionalized graphene platelets (GP) and graphene oxide (GO) sheets were added to a commercial aqueous adhesive dispersion of thermoplastic polyurethane (TP) (Idrotex 200 from FacGB s.r.l.). For both additives, the weight percentage was of industrial interest, 0.01 and 10.1 wt %. The addition of GP/GO was carried out in a simple and scalable-up process that can be applied to other materials and additives. Mechanical, peel tests were applied on polyurethane strips (75 mm long, IS mm wide, and 1.5 mm thick) prepared cutting extruded sheets obtained using Estane 58091, a 70D aromatic polyester-based TP. The tests with 0.01 wt % of GP showed statistically significant higher forces at first failure and maximum forces with respect to the pristine adhesive. Sample characterization was carried out with scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and thermal analysis. A mechanism is suggested for the improved performance of the low-dose GP adhesive
    corecore