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Abstract: Nanoscale control of chemical reactivity, manipulation of reaction pathways, and ultimately
driving the outcome of chemical reactions are quickly becoming reality. A variety of tools are
concurring to establish such capability. The confinement of guest molecules inside nanoreactors, such
as the hollow nanostructures of carbon nanotubes (CNTs), is a straightforward and highly fascinating
approach. It mechanically hinders some molecular movements but also decreases the free energy of
translation of the system with respect to that of a macroscopic solution. Here, we examined, at the
quantum mechanics/molecular mechanics (QM/MM) level, the effect of confinement inside CNTs
on nucleophilic substitution (SN2) and elimination (syn-E2 and anti-E2) using as a model system the
reaction between ethyl chloride and chloride. Our results show that the three reaction mechanisms
are kinetically and thermodynamically affected by the CNT host. The size of the nanoreactor, i.e.,
the CNT diameter, represents the key factor to control the energy profiles of the reactions. A careful
analysis of the interactions between the CNTs and the reactive system allowed us to identify the
driving force of the catalytic process. The electrostatic term controls the reaction kinetics in the SN2
and syn/anti-E2 reactions. The van der Waals interactions play an important role in the stabilization
of the product of the elimination process.

Keywords: nanoreactors; carbon nanotubes; nanoconfinement; nucleophilic substitution SN2; elimination
reaction E2; catalysis

1. Introduction

Host–guest chemistry is emerging as a novel way to manipulate reactivity by confining
reactive systems (guests) inside containers (hosts). Reaction mechanisms are affected by
confinement inside nanoscale reactors such as calixarenes, cucurbiturils, cyclodextrins, metal–
organic frameworks (MOF), and zeolites [1]. Confinement acts on the potential energy surface
(PES) topology, which is responsible for the kinetics (catalyzing or inhibiting reaction channels)
but also changes the thermodynamics of the reaction because of the different interactions
that the supramolecular host establishes with the reactants/products of the reaction [2–5].
The confinement inside a chemical host can have two major effects: the first occurs when the
shape/volume of the host cavity (partly) restrains the guest system, and the second occurs
when new chemical interactions between the host and guest are established.

Carbon nanotubes (CNTs) are nanosystems formed by trivalent carbon atoms covalently
linked to form hollow cylindrical structures. The inside of the cylindrical shape allows them
to host molecules [6,7]. CNTs are characterized by great chemical inertia. A crucial difference
between CNTs and other nanocontainers is that their low reactivity and high stability make
possible reactions under harsh conditions that would destroy other hosts. Experimentally, CNTs
have already been used as containers for preparative chemical reactions [8–19].
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For example, CNT nanoreactors were used to control the regioselectivity of aromatic
halogenation reactions [10] and azide–alkyne cycloadditions [13] or to modulate the catalytic
activity of metal or metal oxide nanoparticles encapsulated inside the cavity of the CNTs [8,11].

The spatial confinement of the reactant molecules inside the nanotube [20–24] dras-
tically affects both the regioselectivity and kinetics of chemical reactions [8–13]. Many
computational studies investigated how the molecular confinement inside CNTs affect
chemical reactions [25–43].

We previously studied the reaction between methyl chloride and a chloride anion (the
prototypical SN2 reaction) inside the confined environment of CNTs of different sizes [39].
Here, considering ethyl chloride as a reactant, we evaluated the effect of CNT confinement
in competitive reactions.

Ethyl chloride can react with the chloride anion via either an SN2 or an E2 mechanism.
Scheme 1 shows the SN2 mechanism (top) and the two pathways of the E2 mechanism,
which occur via different stereochemical paths that depend on the syn (syn-E2) and anti
(anti-E2) periplanar alignment of the leaving chloride anions and β-proton abstraction.
Inside CNTs of different diameters, the requisite of periplanarity can be hard to satisfy and
affect the possible reaction mechanisms. In this work, we used computational approaches
to understand how the competitive SN2 and E2 mechanisms are affected by the CNT
environment. An energy decomposition analysis was also performed to decipher the effects
of the host–CNT environment on the reactivity of the guest systems.
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2. Materials and Methods

The gas-phase reaction profiles were calculated at the DFT level with the M06-2X
functional [44]. The functional was selected on the basis of previous studies [45,46]. The
basis set used was 6-311++G(2df,2p) [47].

The coordinates of nanotubes 24 Å long were obtained with Nanotube Builder imple-
mented in VMD [48]. CNT lengths greater than this value do not significantly affect the
reactivity of guest systems [39].

The reaction profiles inside the CNTs were calculated using the ONIOM method avail-
able in Gaussian16 [49,50]. Mechanical embedding and electrostatic embedding were con-
sidered in the QM/MM calculations [49,51–53]. The high-level layer (i.e., the reactive guest
system of ethyl chloride and chloride anion) was described at the M06-2X/6-311++G(2df,2p)
level of theory. The low-level layer (i.e., the host CNTs) was described using the Universal
Force Field (UFF) method [54]. Partial atomic charges calculated using the QEq scheme [55]
were used to calculate electrostatic interactions. This methodology was effective to describe
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the energetics and the geometries of reactions of molecules confined inside CNTs [39],
although some approximations are required to reduce the complexity of the system, such
as the elimination of counter ions and solvent molecules inside the CNTs.

The structure’s minima and saddle points were fully optimized, and frequency calcu-
lations determined the nature of these critical points.

The effect of confinement on the reaction path (∆Econ f ) was calculated as the difference
between the QM/MM energy (reacting molecules in the CNTs) and the QM model system
energy (reacting molecules in the gas phase).

Considering the scheme implemented in the ONIOM method, ∆Econ f can be decom-
posed as

∆Econ f = ∆EvdW + ∆Eelect + ∆Estrain(host) + ∆Estrain(guest) (1)

where ∆EvdW and ∆Eelect are the energy differences between host and guest of the van der
Waals and electrostatic interactions (comprising both Coulomb interactions and the polar-
ization effects due to the electrostatic embedding scheme). ∆Estrain(host) and ∆Estrain(guest)
measure the energy strain of the host and the guest molecules induced upon the formation
of the complex. These terms were calculated similarly to the Activation Strain Model (ASM)
proposed by van Zeist and Bickelhaupt [56].

Within this formulation, the effect of confinement on the kinetics and thermodynamics
of the SN2, syn-E2, and anti-E2 mechanisms is decomposed into a sum of contributions with
a well-defined chemical meaning, providing a better comprehension of the role of the CNT
cavity in the reactive system.

3. Results and Discussion
3.1. Potential Energy Surfaces for SN2, anti-E2, and syn-E2 Reactions in the Gas Phase

Preliminary DFT calculations were carried out to calculate, at the M06-2X/6-311++G(2df,2p)
level of theory, the stationary points of the potential energy surfaces of the three competitive
mechanisms in the gas phase (Figure 1).
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Figure 1. Gas-phase reaction profiles (kcal mol−1) of the SN2, anti-E2, and syn-E2 mechanisms
computed at the M06-2X/6-311++G(2df,2p) level of theory.
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The approaching nucleophile Cl− forms a preliminary complex (Rx) with ethyl chlo-
ride. From this complex, the system can follow three main paths: SN2, syn-E2, and anti-E2.

The SN2 mechanism, characterized by the lowest transition state energy (17.6 kcal mol−1),
is the energetically favorite path and leads to a product (PdSN2) isoenergetic with Rx, since
the nucleophile and the leaving group are the same species (Cl−). Alternatively, the system
can undergo an anti-E2 mechanism, with an activation barrier of 30.8 kcal mol−1, or a
syn-E2 mechanism, with an activation barrier of 40.6 kcal mol−1. The two elimination
pathways are endothermic, since PdE2 is 6.9 kcal mol−1 higher in energy than PdSN2, and
lead to the formation of an ethylene molecule.

These results were benchmarked (Table 1) against “gold standard” calculations, re-
ported in the literature at the Coupled Cluster CCSD and CCSD(T) levels, with infinite basis
set extrapolation, with contributions of inner-shell correlation, scalar relativistic effects, and
first-order spin-orbit coupling (CCSD(T)/CBS) [45].

Table 1. Critical point energies (kcal mol−1) of the SN2, and syn- and anti-E2 mechanisms. Energies
were calculated with the M06-2X functional with the 6-311++G(2df,2p) basis set and reference
CCSD(T)/CBS values obtained by Bento [45].

SN2 syn-E2 anti-E2 E2

Basis Set ∆E‡ ∆E‡ ∆E‡ ∆E

CCSD(T) CBS [45] 17.5 42.6 29.9 6.9
M06-2X 6-311++G(2df,2p) 17.6 40.6 30.7 6.9

3.2. Potential Energy Surfaces for SN2, anti-E2, and syn-E2 Reactions Confined in CNTs

We investigated the potential energy surfaces for SN2, and syn- and anti-E2 mecha-
nisms inside CNTs of different diameters (Figure 2), namely, CNT(6,6), CNT(7,7), CNT(8,8),
CNT(9,9), CNT(10,10), and CNT(12,12) (Figure S1).
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Figure 2. Schematic representation of SN2, and syn- and anti-E2 mechanisms inside CNTs.

The critical points corresponding to the reactant complex (Rx) and the SN2, and syn-
and anti-E2 transition states (TSs) and products (Pds) were fully optimized inside the
different CNTs. The activation (∆E‡) and reaction (∆E) energies of the reactions inside the
different-diameter CNTs are reported in Tables 2 and 3. The interactions between the CNT
“nanoreactor” and the guest molecules were significantly large. Confinement could lead to
either a decrease (catalysis) or increase (inhibition) in the activation energies (Table 2).
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Table 2. Activation energies (kcal mol−1) of the SN2, and syn- and anti-E2 reaction mechanisms inside
CNT cavities.

Gas Phase (6,6) (7,7) (8,8) (9,9) (10,10) (12,12)

SN2 ∆E‡ 17.6 23.6 16.7 15.4 14.1 21.8 29.2
syn-E2 ∆E‡ 40.6 51.4 37.8 32.3 38.0 44.3 50.3
anti-E2 ∆E‡ 30.7 34.1 31.8 32.6 29.1 36.2 44.9

Table 3. Reaction energies (kcal mol−1) of the SN2, and syn- and anti-E2 reaction mechanisms inside
CNT cavities.

Gas Phase (6,6) (7,7) (8,8) (9,9) (10,10) (12,12)

SN2 ∆E 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E2 ∆E 6.9 3.8 3.3 3.9 3.8 6.6 8.6

The interaction with the CNTs could also affect the thermodynamics of the reactions
(Table 3) and, in particular, the E2 profile that was characterized by reactants and products
with different geometries, which implies that locally, an energy difference is established
among the isoenergetic reactants/products of the gas phase.

To better understand the effect of confinement in the substitution and elimination
mechanisms, we discuss the two mechanisms separately in the next sections.

3.2.1. Substitution Mechanism (SN2)

The computed activation energies for the SN2 reaction inside the different tubes
are reported in Table 2. A comparison with activation energy ∆E‡ in the gas phase
(17.6 kcal mol−1) is shown in Figure 3, indicating the tendency of the reaction to be cat-
alyzed or inhibited by the confinement within CNTs of different sizes.
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Figure 3. Activation energy variations ∆∆E‡ with respect to the gas-phase value (∆E‡) of the SN2
reaction mechanism computed inside CNTs of different diameters.

Figure 3 shows that activation barrier ∆E‡ increased for the narrowest tube (CNT (6,6),
∆∆E‡ = 6.0 kcal mol−1) and for the larger tubes (CNT (10,10) and CNT (12,12), ∆∆E‡ of
4.2 and 11.5 kcal mol−1, respectively). On the contrary, the SN2 reaction was catalyzed by
CNT(7,7), CNT(8,8), and CNT(9,9), showing decreases in the activation energy of 0.9, 2.3,
and 3.2 kcal mol−1. Illustrative pictures are provided in Figure 4. An energy decomposition
analysis of these terms (∆∆E‡ in Table 4) was carried out to shed light on the contributions
that affect the SN2 reaction confined inside CNTs.
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Table 4. Energy contributions (kcal mol−1) to the overall confinement effect on the SN2 reactions.

SN2

(6,6) (7,7) (8,8) (9,9) (10,10) (12,12)

∆Estrain(host) 0.0 0.0 0.0 0.1 0.0 −0.1
∆Estrain(guest) −0.2 −0.2 −0.7 −0.4 0.4 0.0

∆EvdW 0.7 0.0 0.2 1.0 −1.3 −1.3
∆Eelect 5.5 −0.7 −1.9 −4.0 5.1 12.9

∆∆E‡ 6.0 −0.9 −2.4 −3.3 4.2 11.5

The distortion of the host, ∆Estrain(host), did not contribute to the modification of the
kinetics of the SN2 reaction inside the CNTs, as it was close to 0 kcal mol−1 for all the tubes.
This is not surprising because of the rigidity of the CNT walls. The energy term related
to the distortion of the guest molecules, i.e., ∆Estrain(guest), was also small. This effect can
be associated with the rigidity of the guest system inside the CNT cavity. In general, the
distortion of the reactive complex, imposed by the presence of the tube, is larger in Rx than
in the transition state, because the geometry of the TS is less flexible (than the reactant
complex); therefore, the imposed strain is lower. The higher destabilization of Rx compared
with that of the TS gives a net stabilization energy.

In the largest tube (CNT(12,12)), the available volume was large enough to allow the
reacting molecules to maintain the original arrangement observed in the gas-phase system;
thus, the ∆Estrain(guest) term was zero.

When we analyze the chemical interactions occurring in the host/guest system, we
can decompose it in two terms: the vdW term (∆EvdW) and the electrostatic term (∆Eelect).
Of course, the two terms act synergistically.

From the decomposition analysis, it appears that the electrostatic interaction governs
the CNT effect on the SN2 kinetics. For CNT(6,6), CNT(10,10), and CNT(12,12), ∆Eelect was
detrimental (5.5, 4.2, and 11.6 kcal mol−1), while for CNT(7,7), CNT(8,8), and CNT(9,9), the
electrostatic interaction between the tube and the guest contributed to the catalyzing effect
by −0.7, −1.9, and −4.0 kcal mol−1. This term takes into consideration the polarization
induced on the tube by the reacting molecules.
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3.2.2. Elimination Mechanism (E2)

CNTs of different diameters have catalyzing/inhibiting effects also on the elimination
mechanism. Figure 5 compares, with reference to the gas phase, the variation in the activation
barrier of the two E2 mechanisms (anti-E2 and syn-E2) inside CNTs of different diameters.
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The effect of confinement in the tubes is quite different for the two paths (anti-E2 and
syn-E2 mechanisms). In fact, the anti-E2 mechanism is less sensitive to confinement. The main
reason is the different orientation of the chlorine anion in the deprotonation step (Figure 6).
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In the anti-E2 mechanism, the antiperiplanar geometry of the C-H and C-Cl bonds allows
the TS to reorient inside the tube and to optimize its interaction with the tube walls (in particular
with the chlorine atoms), compared with the syn disposition, which is blocked.

The result was that the effect of confinement on Rx and TS was similar for CNT(6,6),
CNT(7,7), CNT(8,8), CNT(9,9), and CNT(10,10), and small variations were observed in the
activation energies.

Two situations are particularly interesting: (i) inside CNT(9,9), the geometry of the
TS was a perfect fit for the tube, and the interaction was stabilizing (catalysis); (ii) inside
CNT(12,12), the tube was too large to interact at the same time with the two chlorines of
the TS, and the reaction was slowed (inhibition).

On the other hand, the syn-E2 mechanism (Figure 7) has a well-defined conformation
inside the CNT that allows both chlorine atoms to interact with the inner surface of the tube.
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Inside CNT(6,6), in the TS, a distortion of the approach direction of the chlorine anion
involved in deprotonation (C-H-Cl angles of 151◦ vs. 165◦ in the gas phase) was observed,
with consequent destabilization. Inside CNT(7,7), CNT(8,8), and CNT(9,9), the chlorine
anion was free enough to maintain its ideal angle of approach. The CNT walls fit well
the TS structure, in particular in the case of CNT(8,8), in which the activation barrier was
lowered by 8.3 kcal mol−1.

Again, for the larger CNT(10,10) and CNT(12,12), the stabilization of the TS was lower
than that of Rx, and the reaction was globally inhibited.

The analysis of the energy contributions due to confinement inside the tubes (Tables 5 and 6)
showed that the electrostatic interactions between the CNTs and the guest system were
once again responsible for the catalysis/inhibition of the anti-E2 and syn-E2 mechanisms
inside the tubes. Particularly interesting is the value of ∆Estrain(guest) in the case of the
syn-E2 mechanism inside CNT(6,6). A considerable value of 4.7 kcal mol−1 appeared and
quantitatively described the distortion due to the lack of space for the TS inside the tube,
which we previously described qualitatively.

Table 5. Energy contributions (kcal mol−1) to the overall confinement effect on the anti-E2 kinetics.

anti-E2

(6,6) (7,7) (8,8) (9,9) (10,10) (12,12)

∆Estrain(host) −0.6 0.0 0.0 −0.1 −0.1 −0.3
∆Estrain(guest) −0.7 0.2 −1.0 −0.2 0.1 0.0

∆EvdW −3.6 1.3 −1.7 0.8 −0.5 −2.4
∆Eelect 8.2 −0.5 4.5 −2.1 5.9 16.8

∆∆E‡ 3.3 1.0 1.8 −1.6 5.4 14.1

Table 6. Energy contributions (kcal mol−1) to the overall confinement effect on the syn-E2 kinetics.

syn-E2

(6,6) (7,7) (8,8) (9,9) (10,10) (12,12)

∆Estrain(host) 0.1 0.0 0.0 0.2 −0.1 0.0
∆Estrain(guest) 4.7 −0.1 −1.0 0.2 0.2 0.2

∆EvdW 0.5 −0.4 −1.9 −1.0 1.6 2.7
∆Eelect 5.5 −2.2 −5.4 −1.9 2.0 6.8

∆∆E‡ 10.8 −2.7 −8.3 −2.5 3.7 9.7
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Since the elimination mechanisms generate a product different from the reactant (in
the SN2 mechanism, product and reactant are the same), the effect of the confinement on
the reaction thermodynamics was also investigated.

As reported in Figure 8 and Table 7, CNTs provide the stabilization of the reaction
product depending on the CNT size.
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Table 7. Energy contributions (kcal mol−1) to the overall confinement effect on the E2 thermodynamics.

E2

(6,6) (7,7) (8,8) (9,9) (10,10) (12,12)

∆Estrain(host) −0.6 0.0 0.0 0.1 0.1 −0.3
∆Estrain(guest) −0.4 1.2 2.2 0.5 0.8 0.7

∆EvdW −6.6 1.6 −1.7 −1.2 −1.9 −3.7
∆Eelect 4.5 −6.0 −3.5 −2.4 0.7 5.0

∆∆E −3.1 −3.2 −3.0 −3.0 −0.3 1.7

CNT(6,6), CNT(7,7), CNT(8,8), and CNT(9,9) stabilized the elimination product (ethy-
lene) by ~3 kcal mol−1 (−3.1, −3.2, −3.0, and −3. kcal mol−1).

Inside CNT(10,10), stabilization was basically absent (−0.3 kcal mol−1), while CNT(12,12)
destabilized the product (1.7 kcal mol−1).

The electrostatic term is always important, but in the present case, a crucial role is
played by van der Waals interactions, since the conjugated system of the wall strongly
interacts with the newly formed alkene via π-π interactions (these interactions, in the
QM/MM model, are included in the van der Waals term). The use of multi-walled CNTs,
which likely increases the EvdW term, can potentially alter the products of the reaction,
favoring the elimination channels.

4. Conclusions

A hybrid QM/MM method was used to describe the confinement effects on the
competing SN2, syn-E2, and anti-E2 mechanisms of the reaction of ethyl chloride with
chloride anion inside CNTs of different diameters. Confinement can have kinetic effects
(either catalysis or inhibition), depending on the CNT diameter. The size of the nanoreactor
represents the key factor to control the reaction profiles of the reactions. In general, when
the geometry of the TS fits well with the size of the tube, the interaction is stabilizing
(catalysis), similar to what happens with enzymes in their catalytic sites. When the tube is
too narrow or too broad, the reactions are inhibited. In general, shape complementarity is a
crucial factor for the interaction between carbon nanomaterials and molecules [57–62].

The selection of an appropriate substrate and of a CNT of the proper size may drive
competitive reactions toward a target structure. For example, it may favor the elimination
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products against the substitution products by stabilizing the generated alkene or impeding
the Walden inversion, typical of the SN2 channel.

The energy decomposition analysis of confinement effects in terms of strain of the guest
and host systems, vdW, and electrostatic interactions demonstrated that the electrostatic
term is the dominant contributor for both catalysis and inhibition. Nonetheless, in the
case of elimination products, van der Waals contributions become important to modify the
reaction thermodynamics.

To summarize, in this work, we show that the confinement of molecules inside CNTs
can significantly alter the pathways of chemical reactions. The most straightforward use of
these nanoreactors is to catalyze reactions, but they can also be used to inhibit the reactivity
of molecules trapped inside the nanotube cavity. In this way, highly reactive molecules,
such as polyynes or π-conjugated [63–68] polymers, can be confined and protected inside
CNTs of suitable dimensions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13010008/s1, Figure S1: Accessible vdW diameters of CNTs.
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