5 research outputs found

    Mitogen and Stress-Activated Kinases 1 and 2 Mediate Endothelial Dysfunction

    Get PDF
    Inflammation promotes endothelial dysfunction, but the underlying mechanisms remain poorly defined in vivo. Using translational vascular function testing in myocardial infarction patients, a situation where inflammation is prevalent, and knock-out (KO) mouse models we demonstrate a role for mitogen-activated-protein-kinases (MAPKs) in endothelial dysfunction. Myocardial infarction significantly lowers mitogen and stress kinase 1/2 (MSK1/2) expression in peripheral blood mononuclear cells and diminished endothelial function. To further understand the role of MSK1/2 in vascular function we developed in vivo animal models to assess vascular responses to vasoactive drugs using laser Doppler imaging. Genetic deficiency of MSK1/2 in mice increased plasma levels of pro-inflammatory cytokines and promoted endothelial dysfunction, through attenuated production of nitric oxide (NO), which were further exacerbated by cholesterol feeding. MSK1/2 are activated by toll-like receptors through MyD88. MyD88 KO mice showed preserved endothelial function and reduced plasma cytokine expression, despite significant hypercholesterolemia. MSK1/2 kinases interact with MAPK-activated proteins 2/3 (MAPKAP2/3), which limit cytokine synthesis. Cholesterol-fed MAPKAP2/3 KO mice showed reduced plasma cytokine expression and preservation of endothelial function. MSK1/2 plays a significant role in the development of endothelial dysfunction and may provide a novel target for intervention to reduce vascular inflammation. Activation of MSK1/2 could reduce pro-inflammatory responses and preserve endothelial vasodilator function before development of significant vascular disease

    Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status

    Get PDF
    Rationale: The diabetes drug metformin is under investigation in cardiovascular disease but the molecular mechanisms underlying possible benefits are poorly understood. Objective: Here we have studied anti-inflammatory effects of the drug and their relationship to anti-hyperglycaemic properties. Methods and Results: In primary hepatocytes from healthy animals, metformin and the IKKβ inhibitor BI605906 both inhibited TNFα-dependent IκB degradation and expression of pro-inflammatory mediators IL-6, IL-1b, and CXCL1/2. Metformin suppressed IKKα/β activation, an effect which could be separated from some metabolic actions, in that BI605906 did not mimic effects of metformin on lipogenic gene expression, glucose production and AMPK activation. Equally AMPK was not required either for mitochondrial suppression of IκB degradation. Consistent with discrete anti-inflammatory actions, in macrophages metformin specifically blunted secretion of pro-inflammatory cytokines, without inhibiting M1/M2 differentiation or activation. In a large treatment naïve diabetes population cohort, we observed differences in the systemic inflammation marker, Neutrophil to Lymphocyte Ratio (NLR), following incident treatment with either metformin or sulfonylurea monotherapy. Compared to sulfonylurea exposure, metformin reduced the mean log-transformed NLR after 8-16 months by 0.09 units (95% CI=0.02-0.17, p=0.013), and increased the likelihood that NLR would be lower than baseline after 8-16 months (OR 1.83, 95% CI=1.22-2.75, p=0.00364). Following up these findings in a double blind placebo controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin suppressed plasma cytokines including the ageing-associated cytokine CCL11. Conclusions: We conclude that anti-inflammatory properties of metformin are exerted irrespective of diabetes status. This may accelerate investigation of drug utility in non-diabetic cardiovascular disease groups

    Metformin selectively targets redox control of complex I energy transduction

    Get PDF
    Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled

    Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug

    Get PDF
    AbstractAnti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling
    corecore