10 research outputs found

    Radiolabelled cytokines for imaging chronic inflammation

    Get PDF
    Diagnosis and particularly follow-up of chronic inflammatory disorders could be often difficult in clinical practice. Indeed, traditional radiological techniques reveal only structural tissue alterations and are not able to monitor functional changes occurring in tissues affected by chronic inflammation. The continuous advances in the knowledge of the pathophysioloy of chronic disorders, combined with the progress of radiochemistry, led to the development of new specific radiolabelled agents for the imaging of chronic diseases. In this scenario, cytokines, due to their pivotal role in such diseases, represent good candidates as radiopharmaceuticals

    Thyroid Cancer Imaging In Vivo by Targeting the Anti-Apoptotic Molecule Galectin-3

    Get PDF
    Background The prevalence of thyroid nodules increases with age, average 4-7% for the U.S.A. adult population, but it is much higher (19-67%) when sub-clinical nodules are considered. About 90% of these lesions are benign and a reliable approach to their preoperative characterization is necessary. Unfortunately conventional thyroid scintigraphy does not allow the distinction among benign and malignant thyroid proliferations but it provides only functional information (cold or hot nodules). The expression of the anti-apoptotic molecule galectin-3 is restricted to cancer cells and this feature has potential diagnostic and therapeutic implications. We show here the possibility to obtain thyroid cancer imaging in vivo by targeting galectin-3. Methods The galectin-3 based thyroid immuno-scintigraphy uses as radiotracer a specific 99mTc-radiolabeled mAb. A position-sensitive high-resolution mini-gamma camera was used as imaging capture device. Human galectin-3 positive thyroid cancer xenografts (ARO) and galectin-3 knockout tumors were used as targets in different experiments in vivo. 38 mice with tumor mass of about 1 gm were injected in the tail vein with 100 ?Ci of 99mTc-labeled mAb to galectin-3 (30 ?g protein/in 100 ?l saline solution). Tumor images were acquired at 1 hr, 3 hrs, 6 hrs, 9 hrs and 24 hrs post injection by using the mini-gamma camera. Findings Results from different consecutive experiments show an optimal visualization of thyroid cancer xenografts between 6 and 9 hours from injection of the radiotracer. Galectin-3 negative tumors were not detected at all. At 6 hrs post-injection galectin-3 expressing tumors were correctly visualized, while the whole-body activity had essentially cleared. Conclusions These results demonstrate the possibility to distinguish preoperatively benign from malignant thyroid nodules by using a specific galectin-3 radio-immunotargeting. In vivo imaging of thyroid cancer may allow a better selection of patients referred to surgery. The possibility to apply this method for imaging and treatment of other galectin-3 expressing tumors is also discussed

    Is Hypoxia a Factor Influencing PSMA-Directed Radioligand Therapy?-An In Silico Study on the Role of Chronic Hypoxia in Prostate Cancer.

    Get PDF
    Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α or β particles the ionization of the DNA molecule is less dependent on the tissue oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an influential factor for PSMA-directed RLT, in particular with β emitters. This study proposes an in silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT. Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an in silico PBPK-based convection-reaction-diffusion model. Three anti-CD31 immunohistochemistry slices were used to simulate the tumor microenvironment. Ten regions of interest with varying hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The cell survival probability was calculated according to the linear-quadratic model. The statistical analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment is due to the larger range covered by the emitted β particles. The dose-to-tissue histogram (DTH) metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac. In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome

    Pre-therapy PET-based voxel-wise dosimetry prediction by characterizing intra-organ heterogeneity in PSMA-directed radiopharmaceutical theranostics.

    Get PDF
    BACKGROUND AND OBJECTIVE Treatment planning through the diagnostic dimension of theranostics provides insights into predicting the absorbed dose of RPT, with the potential to individualize radiation doses for enhancing treatment efficacy. However, existing studies focusing on dose prediction from diagnostic data often rely on organ-level estimations, overlooking intra-organ variations. This study aims to characterize the intra-organ theranostic heterogeneity and utilize artificial intelligence techniques to localize them, i.e. to predict voxel-wise absorbed dose map based on pre-therapy PET. METHODS 23 patients with metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA I&T RPT were retrospectively included. 48 treatment cycles with pre-treatment PET imaging and at least 3 post-therapeutic SPECT/CT imaging were selected. The distribution of PET tracer and RPT dose was compared for kidney, liver and spleen, characterizing intra-organ heterogeneity differences. Pharmacokinetic simulations were performed to enhance the understanding of the correlation. Two strategies were explored for pre-therapy voxel-wise dosimetry prediction: (1) organ-dose guided direct projection; (2) deep learning (DL)-based distribution prediction. Physical metrics, dose volume histogram (DVH) analysis, and identity plots were applied to investigate the predicted absorbed dose map. RESULTS Inconsistent intra-organ patterns emerged between PET imaging and dose map, with moderate correlations existing in the kidney (r = 0.77), liver (r = 0.5), and spleen (r = 0.58) (P < 0.025). Simulation results indicated the intra-organ pharmacokinetic heterogeneity might explain this inconsistency. The DL-based method achieved a lower average voxel-wise normalized root mean squared error of 0.79 ± 0.27%, regarding to ground-truth dose map, outperforming the organ-dose guided projection (1.11 ± 0.57%) (P < 0.05). DVH analysis demonstrated good prediction accuracy (R2 = 0.92 for kidney). The DL model improved the mean slope of fitting lines in identity plots (199% for liver), when compared to the theoretical optimal results of the organ-dose approach. CONCLUSION Our results demonstrated the intra-organ heterogeneity of pharmacokinetics may complicate pre-therapy dosimetry prediction. DL has the potential to bridge this gap for pre-therapy prediction of voxel-wise heterogeneous dose map

    Use of a 99mTc labeled anti-TNFalpha monoclonal antibody in Crohn's disease: in vitro and in vivo studies.

    No full text
    Crohn's disease (CD) is a chronic inflammatory bowel disease characterized by a cellular-mediated immune response driven by cytokines secreted mainly by T helper 1 cells (Th1). In active phases of the disease, an increased production and release of tumor necrosis factor a (TNFalpha) by macrophages and monocytes of the lamina propria has been described. The aim of this study was to detect the presence of TNFalpha within the gut mucosa in patients with active CD by using (99m)Tc-labelled chimeric human/mouse monoclonal antibody anti-TNFalpha (Infliximab, Remicade). Infliximab has been labeled with (99m)Tc after reduction of disulfide bound by 2-ME method. In vitro binding assay and biodistribution in animal of [(99m)Tc]Infliximab has been performed to evaluate the retention of its biological activity. Ten patients with active CD refractory to conventional medical therapies were studied. Images of the abdomen were acquired at 6 to 20 h after i.v. injection of about 10 mCi of [(99m)Tc]Infliximab and a week later, all patients were also studied with [(99m)Tc]HMPAO-labeled autologous white blood cells (WBC). A product with high labeling efficiency (>95%) and stability has been obtained. In vitro tests with stimulated T-cells expressing TNFalphalpha indicated that [(99m)Tc] Infliximab retains its binding activity to cell bound TNFalpha as compared to unlabelled Infliximab. The degree of [(99m)Tc]Infliximab uptake by the inflamed bowel evaluated at 20 h postinjection was much less than that seen with labeled WBC and with a different distribution. Three of these patients received anti-TNFalpha (Infliximab) for therapeutic purposes with good clinical results despite the scintigraphy with (99m)Tc-Infliximab was negative in 2 of them. Scintigraphy with [(99m)Tc]Infliximab shows the presence of little TNFalpha in the affected bowel of patients with active CD. Therefore, the clinical benefit that patients have from Infliximab therapy is unlikely the consequence of a local a reduction of TNFalpha and the mechanism of action of Infliximab, in therapeutic doses, deserves further investigations

    A rigidified AAZTA-like ligand as efficient chelator for 68Ga radiopharmaceuticals

    No full text
    The new cyclohexane-fused CyAAZTA ligand was synthesized to increase the structural rigidity of the heptadentate chelator AAZTA with the aim of improving the overall stability of its GaIII complex. The stability constant of Ga(CyAAZTA)−, determined both by pH-potentiometry (logKGaL=21.39) and by 71Ga NMR (logKGaL=21.92), was found similar to that of GaAAZTA (logKGaL=22.18). The kinetic inertness of Ga(CyAAZTA)− was investigated by following its transmetallation and ligand exchange reactions with Cu2+ and human serum transferrin, respectively. The formation of a hydroxido-complex near pH 7 decreases the half-life (t1/2) of the dissociation reactions for Ga(CyAAZTA)− compared to Ga(AAZTA)− (8.5 h vs 21 h, pH 7.4). However, at pH < 7 the t1/2 of Ga(CyAAZTA)− is much longer (234 h at pH 6). Finally, CyAAZTA was successfully radiolabelled with 68Ga in acetate buffer at pH 3.8, in 15 minutes at room temperature at [CyAAZTA]=10 μM, with a labelling yield higher than 80 . A 1 μM solution of CyAAZTA was successfully labelled (L.Y.: 97.4 ) in 5 minutes at 90 °C. Stability tests in human serum and in the presence of 50 mM DTPA showed no significant decomposition of 68GaCyAAZTA over 90 minutes

    In silico study on radiobiological efficacy of Ac-225 and Lu-177 for PSMA-guided radiotherapy.

    No full text
    The good efficacy of radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) for the treatment of metastatic castration-resistant prostate cancer (mCRPC) has been recently demonstrated in several clinical studies. However, the treatment effect of 177Lu-PSMA-ligands is still suboptimal for a significant fraction of patients. In contrast to external beam radiotherapy, the radiation dose distribution itself is strongly influenced by the heterogeneous tumour microenvironment. Although microdosimetry is critical for RLT treatment outcome, it is difficult to clinically or experimentally establish the quantitative relation. We propose an in silico approach to quantitatively investigate the microdosimetry and its influence on treatment outcome for PSMA-directed RLT of two different radioisotopes 177Lu and 225 Ac. The ultimate goal is optimize the combined 177 Lu and 225 Ac-PSMA therapy and maximize the anti-tumour effect, while minimizing irradiation of off-target tissues.Clinical relevance- With the proposed hybrid model we show that 177Lu-PSMA-ligands treatment assures a more homogeneously distributed dose and a lower dependency of the treatment outcome on the domain vascularisation. On the other hand, the 225Ac-PSMA-ligands treatment shows a much stronger efficacy in killing tumor cells with an equivalent mean dose distribution even in an hypoxic environment

    99mTc-EDDA/HYNIC-TOC in the management of medullary thyroid carcinoma

    No full text
    An early diagnosis of distant metastases or local recurrences of medullary thyroid carcinoma (MTC) can be achieved by several conventional radiological modalities (e.g., ultrasonography, computed tomography [CT], and magnetic resonance imaging [MRI] as well as by radioisotopic procedures, such as positron emission tomography (PET), scintigraphy with different types of radiopharmaceuticals, and radiolabeled receptor-ligands in particular. The aim of this study was to evaluate the clinical utility of 99mTc-EDDA/HYNIC-TOC, a new octreotide derivative, to detect recurrences of disease or distant metastases in MTC. Images obtained of 5 patients with high levels of serum calcitonin were compared to findings obtained with other diagnostic procedures: 111In-octreotide, 99mTc-DMSA-V, 18FF-flouro-D-deoxyglucose-PET, and CT/MRI. 99mTc-EDDA/HYNIC-TOC was positive in all patients and showed 15 areas of pathological uptake in the cervical and mediastinal regions. 111In-octreotide was positive in 3 of 3 patients and showed 4 areas, compared to 8 of 99mTc-EDDA/HYNIC-TOC. 99mTc-V-DMSA was positive in 3 of 4 patients but showed 6 pathological areas, compared to 13 of 99mTc-EDDA/HYNIC-TOC. 18F-FDG-PET was positive in 5 of 5 patients but showed only 11 areas, compared to 15 of 99mTc-EDDA/HYNIC-TOC. The CT scan was positive in only 2 patients. In conclusion, 99mTc-EDDA/HYNIC-TOC detected more sites of pathological uptake than other modalities, showed better imaging properties than 111In-octreotide, and might be the radiopharmaceutical of choice for providing a rationale for radioisotopic therapy

    Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review

    Get PDF
    Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer
    corecore