49 research outputs found

    Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy

    Get PDF
    The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated

    The heterogeneous coma of comet 67P/Churyumov-Gerasimenko as seen by ROSINA: H <inf>2</inf> O, CO <inf>2</inf>, and CO from September 2014 to February 2016

    Get PDF
    Context. The ESA Rosetta mission has been investigating the environment of comet 67P/Churyumov-Gerasimenko (67P) since August 2014. Among the experiments on board the spacecraft, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers to analyse the composition of neutrals and ions and a COmet Pressure Sensor (COPS) to monitor the density and velocity of neutrals in the coma. Aims. We study heterogeneities in the coma during three periods starting in October 2014 (summer in the northern hemisphere) and ending in February 2016 (end of winter in the northern hemisphere). We provide a detailed description of the main volatiles dynamics (H2O, CO2, CO) and their abundance ratios. Methods. We analysed and compared the data of the Reflectron-Type Time-Of-Flight (RTOF) mass spectrometer with data from both the Double Focusing Mass Spectrometer (DFMS) and COPS during the comet escort phase. This comparison has demonstrated that the observations performed with each ROSINA sensor are indeed consistent. Furthermore, we used a Direct Simulation Monte Carlo (DSMC) model to compare modelled densitites with in situ detections. Results. Our analysis shows how the active regions of the main volatiles evolve with the seasons with a variability mostly driven by the illumination conditions; this is the case except for an unexpected dichotomy suggesting the presence of a dust layer containing water deposited in the northern hemisphere during previous perihelions hiding the presence of CO2. The influence of various parameters is investigated in detail: distance to the comet, heliocentric distance, longitude and latitude of sub-satellite point, local time, and phase angle

    Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study

    Get PDF
    We examine the evolution of the water production of comet 67P/Churyumov–Gerasimenko during the Rosetta mission (2014 June–2016 May) based on in situ and remote sensing measurements made by Rosetta instruments, Earth-based telescopes and through the development of an empirical coma model. The derivation of the empirical model is described and the model is then applied to detrend spacecraft position effects from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) data. The inter-comparison of the instrument data sets shows a high level of consistency and provides insights into the water and dust production. We examine different phases of the orbit, including the early mission (beyond 3.5 au) where the ROSINA water production does not show the expected increase with decreasing heliocentric distance. A second important phase is the period around the inbound equinox, where the peak water production makes a dramatic transition from northern to southern latitudes. During this transition, the water distribution is complex, but is driven by rotation and active areas in the north and south. Finally, we consider the perihelion period, where there may be evidence of time dependence in the water production rate. The peak water production, as measured by ROSINA, occurs 18–22 d after perihelion at 3.5 ± 0.5 × 1028 water molecules s-1. We show that the water production is highly correlated with ground-based dust measurements, possibly indicating that several dust parameters are constant during the observed period. Using estimates of the dust/gas ratio, we use our measured water production rate to calculate a uniform surface loss of 2–4 m during the current perihelion passage

    Trends in self-reported prevalence and management of hypertension, hypercholesterolemia and diabetes in Swiss adults, 1997-2007

    Get PDF
    Switzerland has a low mortality rate from cardiovascular diseases, but little is known regarding prevalence and management of cardiovascular risk factors (CV RFs: hypertension, hypercholesterolemia and diabetes) in the general population. In this study, we assessed 10-year trends in self-reported prevalence and management of cardiovascular risk factors in Switzerland. data from three national health interview surveys conducted between 1997 and 2007 in representative samples of the Swiss adult population (49,261 subjects overall). Self-reported CV RFs prevalence, treatment and control levels were computed. The sample was weighted to match the sex - and age distribution, geographical location and nationality of the entire adult population of Switzerland. self-reported prevalence of hypertension, hypercholesterolemia and diabetes increased from 22.1%, 11.9% and 3.3% in 1997 to 24.1%, 17.4% and 4.8% in 2007, respectively. Prevalence of self-reported treatment among subjects with CV RFs also increased from 52.1%, 18.5% and 50.0% in 1997 to 60.4%, 38.8% and 53.3% in 2007 for hypertension, hypercholesterolemia and diabetes, respectively. Self-reported control levels increased from 56.4%, 52.9% and 50.0% in 1997 to 80.6%, 75.1% and 53.3% in 2007 for hypertension, hypercholesterolemia and diabetes, respectively. Finally, screening during the last 12 months increased from 84.5%, 86.5% and 87.4% in 1997 to 94.0%, 94.6% and 94.1% in 2007 for hypertension, hypercholesterolemia and diabetes, respectively. in Switzerland, the prevalences of self-reported hypertension, hypercholesterolemia and diabetes have increased between 1997 and 2007. Management and screening have improved, but further improvements can still be achieved as over one third of subjects with reported CV RFs are not treated

    2 years with comet 67P/Churyumov-Gerasimenko: H2O, CO2, CO as seen by ROSINA RTOF

    Get PDF
    The Rosetta space mission investigated comet 67P/Churyumov-Gerasimenko (67P) over two years from August 2014 to September 2016. Onboard the spacecraft, the ROSINA experiment included two mass spectrometers to derive the composition of neutrals and ions, and a COmet Pressure Sensor (COPS) to monitor the density and velocity of the neutrals in the coma. We will here analyse and discuss data from the Reflectron-type Time-Of-Flight instrument during the comet escort phase. The RTOF mass spectrometer possessed a wide mass range and a high temporal resolution (Balsiger et al., 2007). The analysis of 67P/C-G's coma major molecules over the mission showed strong variability of the comet coma's main volatiles concentrations (H2O, CO2, CO) and their relative abundances. The 2 years long Rosetta mission allowed us to observe the seasonal evolution in the atmosphere of 67P, in particular the change occurring during the equinoxes and at perihelion. In this work, we analyze the asymmetry in the outgassing rate before and after the perihelion (13/08/2015), the evolution of abundance ratios through the whole mission, and in particular the behavior of the very volatile CO molecules. Density maps projected on the surface of 67P demonstrate the evolution of the three main coma species after the outbound equinox. We will present first results of our comet nucleus thermal modelling used to simulate the internal structure and temperature evolution of 67P at characteristic surface areas. These results will be compared with the coma composition measurements obtained by ROSINA...

    Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko

    Get PDF
    We analyse the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) - the Double Focusing Mass Spectrometer data between 2014 August and 2016 February to examine the effect of seasonal variations on the four major species within the coma of 67P/Churyumov-Gerasimenko (H2O, CO2, CO, and O2), resulting from the tilt in the orientation of the comet's spin axis. Using a numerical data inversion, we derive the non-uniform activity distribution at the surface of the nucleus for these species, suggesting that the activity distribution at the surface of the nucleus has not significantly been changed and that the differences observed in the coma are solely due to the variations in illumination conditions. A three-dimensional Direct Simulation Monte Carlo model is applied where the boundary conditions are computed with a coupling of the surface activity distributions and the local illumination. The model is able to reproduce the evolution of the densities observed by ROSINA including the changes happening at equinox. While O2 stays correlated with H2O as it was before equinox, CO2 and CO, which had a poor correlation with respect to H2O pre-equinox, also became well correlated with H2O post-equinox. The integration of the densities from the model along the line of sight results in column densities directly comparable to the VIRTIS-H observations. Also, the evolution of the volatiles' production rates is derived from the coma model showing a steepening in the production rate curves after equinox. The model/data comparison suggests that the seasonal effects result in the Northern hemisphere of 67P's nucleus being more processed with a layered structure while the Southern hemisphere constantly exposes new material

    Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko

    Get PDF
    Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
    corecore