10 research outputs found

    Disrupting the Interplay between Programmed Cell Death Protein 1 and Programmed Death Ligand 1 with Spherical Nucleic Acids in Treating Cancer

    No full text
    Disrupting the interplay between programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) is a powerful immunotherapeutic approach to cancer treatment. Herein, spherical nucleic acid (SNA) liposomal nanoparticle conjugates that incorporate a newly designed antisense DNA sequence specifically against PD-L1 (immune checkpoint inhibitor SNAs, or IC-SNAs) are explored as a strategy for blocking PD-1/PD-L1 signaling within the tumor microenvironment (TME). Concentration-dependent PD-L1 silencing with IC-SNAs is observed in MC38 colon cancer cells, where IC-SNAs decrease both surface PD-L1 (sPD-L1) and total PD-L1 expression. Furthermore, peritumoral administration of IC-SNAs in a syngeneic mouse model of MC38 colon cancer leads to reduced sPD-L1 expression in multiple cell populations within the TME, including tumor cells, dendritic cells, and myeloid derived suppressor cells. The treatment effectively increases CD8+ T cells accumulation and functionality in the TME, which ultimately inhibits tumor growth and extends animal survival. Taken together, these data show that IC-SNA nanoconstructs are capable of disrupting the PD-1/PD-L1 interplay via gene regulation, thereby providing a promising avenue for cancer immunotherapy

    Tumor Retention of Enzyme-Responsive Pt(II) Drug-Loaded Nanoparticles Imaged by Nanoscale Secondary Ion Mass Spectrometry and Fluorescence Microscopy.

    No full text
    In nanomedicine, determining the spatial distribution of particles and drugs, together and apart, at high resolution within tissues, remains a major challenge because each must have a different label or detectable feature that can be observed with high sensitivity and resolution. We prepared nanoparticles capable of enzyme-directed assembly of particle therapeutics (EDAPT), containing an analogue of the Pt(II)-containing drug oxaliplatin, an 15N-labeled monomer in the hydrophobic block of the backbone of the polymer, the near-infrared dye Cy5.5, and a peptide that is a substrate for tumor metalloproteinases in the hydrophilic block. When these particles reach an environment rich in tumor associated proteases, the hydrophilic peptide substrate is cleaved, causing the particles to accumulate through a morphology transition, locking them in the tumor extracellular matrix. To evaluate the distribution of drug and EDAPT carrier in vivo, the localization of the isotopically labeled polymer backbone was compared to that of Pt by nanoscale secondary ion mass spectrometry (NanoSIMS). The correlation of NanoSIMS with super-resolution fluorescence microscopy revealed the release of the drug from the nanocarrier and colocalization with cellular DNA within tumor tissue. The results confirmed the dependence of particle accumulation and Pt(II) drug delivery on the presence of a Matrix Metalloproteinase (MMP) substrate and demonstrated antitumor activity. We conclude that these techniques are powerful for the elucidation of the localization of cargo and carrier, and enable a high-resolution assessment of their performance following in vivo delivery

    The future of scientific leadership is interdisciplinary: The 2019 CAS Future Leaders share their vision

    No full text
    For the last decade, the CAS Future Leaders program has gathered early-career scientists from across the globe based on their outstanding accomplishments in the field of chemistry to provide support to participants in cultivating their own voices and futures in scientific leadership. The goal of the program has been to empower early-career scientists like us to begin to shape our own future leadership roles, from learning to convey effective speech by developing our own research stories to growing to be better mentors for the next generation of future leaders. In 2019, to honor the 10th anniversary of the program, the CAS Future Leaders program encompassed essential leadership skills divided into five topics, namely, storytelling, insights, strategies, perspectives, and impact, some of which were new to the program this year. However, what was not new to the program was an emphasis on the potential global impact that this program could make. To do this, the program brought together in this cohort 29 post-docs and graduate students, from 16 countries. A staple of this program is not only the breadth of countries that are represented but also the many facets of chemistry that are represented as demonstrated later in the article. One reason for this is that a leader in the sciences will need to be open to innovations across discipline and geographical boundaries, something that we explored a lot during our time together

    Stimuli-Responsive Nanomaterials for Biomedical Applications

    No full text
    corecore