94 research outputs found

    Relating perturbation magnitude to temporal gene expression in biological systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most transcriptional activity is a result of environmental variability. This cause (environment) and effect (gene expression) relationship is essential to survival in any changing environment. The specific relationship between environmental perturbation and gene expression – and stability of the response – has yet to be measured in detail. We describe a method to quantitatively relate perturbation magnitude to response at the level of gene expression. We test our method using <it>Saccharomyces cerevisiae </it>as a model organism and osmotic stress as an environmental stress.</p> <p>Results</p> <p>Patterns of gene expression were measured in response to increasing sodium chloride concentrations (0, 0.5, 0.7, 1.0, and 1.2 M) for sixty genes impacted by osmotic shock. Expression of these genes was quantified over five time points using reverse transcriptase real-time polymerase chain reaction. Magnitudes of cumulative response for specific pathways, and the set of all genes, were obtained by combining the temporal response envelopes for genes exhibiting significant changes in expression with time. A linear relationship between perturbation magnitude and response was observed for the range of concentrations studied.</p> <p>Conclusion</p> <p>This study develops a quantitative approach to describe the stability of gene response and pathways to environmental perturbation and illustrates the utility of this approach. The approach should be applicable to quantitatively evaluate the response of organisms via the magnitude of response and stability of the transcriptome to environmental change.</p

    Identification and characterization of the dif Site from Bacillus subtilis

    Get PDF
    Bacteria with circular chromosomes have evolved systems that ensure multimeric chromosomes, formed by homologous recombination between sister chromosomes during DNA replication, are resolved to monomers prior to cell division. The chromosome dimer resolution process in Escherichia coli is mediated by two tyrosine family site-specific recombinases, XerC and XerD, and requires septal localization of the division protein FtsK. The Xer recombinases act near the terminus of chromosome replication at a site known as dif (Ecdif). In Bacillus subtilis the RipX and CodV site-specific recombinases have been implicated in an analogous reaction. We present here genetic and biochemical evidence that a 28-bp sequence of DNA (Bsdif), lying 6° counterclockwise from the B. subtilis terminus of replication (172°), is the site at which RipX and CodV catalyze site-specific recombination reactions required for normal chromosome partitioning. Bsdif in vivo recombination did not require the B. subtilis FtsK homologues, SpoIIIE and YtpT. We also show that the presence or absence of the B. subtilis SPβ-bacteriophage, and in particular its yopP gene product, appears to strongly modulate the extent of the partitioning defects seen in codV strains and, to a lesser extent, those seen in ripX and dif strains

    Proteome Analyses of Strains Cyanothece ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp. Under Culture Conditions Resulting in Enhanced H2 Production.

    Get PDF
    Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothecesp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H2-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H2 production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H2 production

    Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    Get PDF
    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes

    Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    Get PDF
    Background: Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. Results: We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Conclusions: Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution

    An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    Get PDF
    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella

    Selection of eligible participants for screening for lung cancer using primary care data

    Get PDF
    Lung cancer screening is effective if offered to people at increased risk of the disease. Currently, direct contact with potential participants is required for evaluating risk. A way to reduce the number of ineligible people contacted might be to apply risk-prediction models directly to digital primary care data, but model performance in this setting is unknown.Method: The Clinical Practice Research Datalink, a computerised, longitudinal primary care database, was used to evaluate the LLPv2 and PLCOm2012 models. Lung cancer occurrence over 5-6 years was measured in ever-smokers aged 50-80 years and compared with 5-year (LLPv2) and 6-year (PLCOm2012) predicted risk. Results: Over 5 and 6 years, 7,123 and 7,876 lung cancers occurred respectively from a cohort of 842,109 ever smokers. After recalibration, LLPV2 produced a c-statistic of 0.700 (0.694-0.710) but mean predicted risk was over-estimated (predicted: 4.61%, actual: 0.9%). PLCOm2012 showed similar performance (c-statistic: 0.679 (0.673–0.685), predicted risk: 3.76%. Applying risk-thresholds of 1% (LLPv2) and 0.15% (PLCOm2012), would avoid contacting 42.7% and 27.4% of ever-smokers who did not develop lung cancer for screening eligibility assessment, at the cost of missing 15.6% and 11.4% of lung cancers.Conclusion: Risk-prediction models showed only moderate discrimination when applied to routinely collected primary care data, which may be explained by quality and completeness of data. However, they may substantially reduce the number of people for initial evaluation of screening eligibility, at the cost of missing some lung cancers. Further work is needed to establish whether newer models have improved performance in primary care data

    Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    Get PDF
    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits

    Short‐term psychosocial outcomes of adding a non‐contrast abdominal computed tomography (CT) scan to the thoracic CT within lung cancer screening

    Get PDF
    Objectives To evaluate psychological, social, and financial outcomes amongst individuals undergoing a non-contrast abdominal computed tomography (CT) scan to screen for kidney cancer and other abdominal malignancies alongside the thoracic CT within lung cancer screening. Subjects and Methods The Yorkshire Kidney Screening Trial (YKST) is a feasibility study of adding a non-contrast abdominal CT scan to the thoracic CT within lung cancer screening. A total of 500 participants within the YKST, comprising all who had an abnormal CT scan and a random sample of one-third of those with a normal scan between 14/03/2022 and 24/08/2022 were sent a questionnaire at 3 and 6 months. Outcomes included the Psychological Consequences Questionnaire (PCQ), the short-form of the Spielberger State–Trait Anxiety Inventory, and the EuroQoL five Dimensions five Levels scale (EQ-5D-5L). Data were analysed using regression adjusting for participant age, sex, socioeconomic status, education, baseline quality of life (EQ-5D-5L), and ethnicity. Results A total of 380 (76%) participants returned questionnaires at 3 months and 328 (66%) at 6 months. There was no difference in any outcomes between participants with a normal scan and those with abnormal scans requiring no further action. Individuals requiring initial further investigations or referral had higher scores on the negative PCQ than those with normal scans at 3 months (standardised mean difference 0.28 sd, 95% confidence interval 0.01–0.54; P = 0.044). The difference was greater in those with anxiety or depression at baseline. No differences were seen at 6 months. Conclusion Screening for kidney cancer and other abdominal malignancies using abdominal CT alongside the thoracic CT within lung cancer screening is unlikely to cause significant lasting psychosocial or financial harm to participants with incidental findings
    corecore