174 research outputs found

    Stationary device produces homogeneous mixture of fluids

    Get PDF
    Stationary device produces a homogeneous mixture of two or more one-phase or two-phase fluids. The device contains two concentric flow guides with helical passageways through which the fluids are forced into turbulent flow by the system pressure differential

    Facilitating Authentic Learning Experiences in Distance Education: Embedding Research-Based Practices into an Online Peer Feedback Tool

    Get PDF
    Authentic learning in online education is feasible with intentional instructional strategies and appropriate educational technologies, yet as a learning approach, barriers to implementation still exist. We argue that authentic learning in online education can be successfully supported when the characteristics of authentic learning are (a) intentionally applied and (b) supported through research-based tools that facilitate the learning process seamlessly for students. To address this challenge, we developed a research-based online application that supports authentic learning. In this article, the theoretical foundations and empirical support for the tool are described, along with critical design decisions that support suggested characteristics of authentic activities. The authors overview formative research conducted during a four-year development process. Several case studies conducted at research-intensive universities are provided to describe how student motivation, metacognition, and strategic behaviors were facilitated through the tool and to encourage readers to apply similar research-based strategies in their own authentic learning contexts

    Two quantum Ising algorithms for the shortest-vector problem

    Get PDF
    Quantum computers are expected to break today's public key cryptography within a few decades. New cryptosystems are being designed and standardized for the postquantum era, and a significant proportion of these rely on the hardness of problems like the shortest-vector problem to a quantum adversary. In this paper we describe two variants of a quantum Ising algorithm to solve this problem. One variant is spatially efficient, requiring only O ( N log 2 N ) qubits, where N is the lattice dimension, while the other variant is more robust to noise. Analysis of the algorithms' performance on a quantum annealer and in numerical simulations shows that the more qubit-efficient variant will outperform in the long run, while the other variant is more suitable for near-term implementation

    Operando XAFS investigation on the effect of ash deposition on three-way catalyst used in gasoline particulate filters and the effect of the manufacturing process on the catalytic activity

    Get PDF
    Platinum group metals such as palladium and rhodium based catalysts are currently being implemented in gasoline particulate filter (GPF) autoexhaust after treatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. This operando study follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2 and O2 was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 °C. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 °C post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance

    Influence of synthesis conditions on the structure of nickel nanoparticles and their reactivity in selective asymmetric hydrogenation

    Get PDF
    Unsupported and SiO2-supported Ni nanoparticles (NPs), were synthesised via hot-injection colloidal route using oleylamine (OAm) and trioctylphosphine (TOP) as reducing and protective agents, respectively. By adopting a multi-length scale structural characterization, it was found that by changing equivalents of OAM and TOP not only the size of the nanoparticles is affected but also the Ni electronic structure. The synthetized NPs were modified with (R,R)-tartaric acid (TA) and investigated in the asymmetric hydrogenation of methyl acetoacetate to chiral methyl-3-hydroxy butyrate. The comparative analysis of structure and catalytic performance for the synthetized catalysts has enabled us to identify a Ni metallic active surface, whereby the activity increases with the size of the metallic domains. Conversely, at the high conversion obtained for the unsupported NPs no impact of particle size on the selectivity was observed. (R)-selectivity was very high only on catalysts containing positively charged Ni species such as over the SiO2-supported Ni oxide NPs. This work shows that the chiral modification of metallic Ni NPs with TA is insufficient to maintain high selectivity towards the (R)-enantiomer at long reaction time and provide guidance for the engineering of long-term stable enantioselective catalysts

    Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles

    Get PDF
    Sustainable technologies require both renewable feedstocks and catalysts that are able to direct their conversion to specific products. We establish a structure-activity relationship for the aqueous phase reforming of glycerol over 2% Pt/Al2O3 catalysts, whereby the reaction pathway can be controlled to produce either hydrogen or 1,2-propanediol as the main product. Using the colloidal synthesis method, the reduction temperature was altered to produce Pt nanoparticle catalysts supported on Al2O3 with varying Pt particle size. The catalytic activity of the samples for the APR of glycerol resulted in a higher conversion of glycerol (34%) for the larger Pt particle size of ∼3.5 nm, producing the liquid 1,2-propanediol as the major product with a yield of 12.5%, whereas smaller particles of ∼2.2 nm gave hydrogen as the main product (5.5% yield). This work demonstrates how the APR of glycerol can be tuned to yield both valuable liquid and gas products using tailored Pt nanoparticles

    Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO2

    Get PDF
    We demonstrate a modified sol-immobilization procedure using (MeOH)x/(H2O)1-x solvent mixtures to prepare Pd/TiO2 catalysts that are able to reduce the formation of acid catalyzed products, e. g. ethers, for the hydrogenation of furfural. Transmission electron microscopy found a significant increase in polyvinyl alcohol (PVA) deposition at the metal-support interface and temperature programmed reduction found a reduced uptake of hydrogen, compared to an established Pd/TiO2 preparation. We propose that the additional PVA hinders hydrogen spillover onto the TiO2 support and limits the formation of Brønsted acid sites, required to produce ethers. Elsewhere, the new preparation route was able to successfully anchor colloidal Pd to the TiO2 surface, without the need for acidification. This work demonstrates the potential for minimizing process steps as well as optimizing catalyst selectivity – both important objectives for sustainable chemistry

    Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination

    Get PDF
    An infectious bronchitis virus Arkansas DPI (Ark DPI) virulent strain was sequenced, analyzed and compared with many different IBV strains and coronaviruses. The genome of Ark DPI consists of 27,620 nucleotides, excluding poly (A) tail, and comprises ten open reading frames. Comparative sequence analysis of Ark DPI with other IBV strains shows striking similarity to the Conn, Gray, JMK, and Ark 99, which were circulating during that time period. Furthermore, comparison of the Ark genome with other coronaviruses demonstrates a close relationship to turkey coronavirus. Among non-structural genes, the 5'untranslated region (UTR), 3C-like proteinase (3CLpro) and the polymerase (RdRp) sequences are 100% identical to the Gray strain. Among structural genes, S1 has 97% identity with Ark 99; S2 has 100% identity with JMK and 96% to Conn; 3b 99%, and 3C to N is 100% identical to Conn strain. Possible recombination sites were found at the intergenic region of spike gene, 3'end of S1 and 3a gene. Independent recombination events may have occurred in the entire genome of Ark DPI, involving four different IBV strains, suggesting that genomic RNA recombination may occur in any part of the genome at number of sites. Hence, we speculate that the Ark DPI strain originated from the Conn strain, but diverged and evolved independently by point mutations and recombination between field strains

    A data-driven analysis of workers' earnings on Amazon Mechanical Turk

    Get PDF
    A growing number of people are working as part of on-line crowd work. Crowd work is often thought to be low wage work. However, we know little about the wage distribution in practice and what causes low/high earnings in this setting. We recorded 2,676 workers performing 3.8 million tasks on Amazon Mechanical Turk. Our task-level analysis revealed that workers earned a median hourly wage of only ~2 USD/h, and only 4% earned more than 7.25 USD/h. While the average requester pays more than 11 USD/h, lower-paying requesters post much more work. Our wage calculations are influenced by how unpaid work is accounted for, e.g., time spent searching for tasks, working on tasks that are rejected, and working on tasks that are ultimately not submitted. We further explore the characteristics of tasks and working patterns that yield higher hourly wages. Our analysis informs platform design and worker tools to create a more positive future for crowd work

    Novel neutralizing monoclonal antibodies protect rodents against lethal filovirus challenges

    Get PDF
    Filoviruses are the causative agents of lethal hemorrhagic fever in human and non-human primates (NHP). The family of Filoviridae is composed of three genera, Ebolavirus, Marburgvirus and Cuevavirus. There are currently no approved vaccines or antiviral therapeutics for the treatment of filovirus infections in humans. Passive transfer of neutralizing antibodies targeting the Ebola virus (EBOV) glycoprotein (GP) has proven effective in protecting mice, guinea pigs and NHP from lethal challenges with EBOV. In this study, we generated two neutralizing monoclonal antibodies (MAbs), termed S9 and M4 that recognize the GP of EBOV or multiple strains of Marburg virus (MARV), respectively. We characterized the putative binding site of S9 as a linear epitope on the glycan cap of the GP1 subunit of the EBOV-GP. The M4 antibody recognizes an unknown conformational epitope on MARV-GP. Additionally, we demonstrated the post-exposure protection potential of these antibodies in both the mouse and guinea pig models of filovirus infection. These data indicate that MAbs S9 and M4 would be good candidates for inclusion in an antibody cocktail for the treatment of filovirus infections
    corecore