7 research outputs found

    Rad-hard semiconductor memories

    No full text

    The methodology for active testing of electronic devices under the radiations

    No full text
    The methodology, developed for active testing of electronic devices under the radiations, is presented. The test set-up includes a gamma-ray facility, the hardware board/fixtures and the software tools purposely designed and realized. The methodology is so wide-ranging to allow us the verification of different classes of electronic devices, even if only application examples for static random access memory modules are reported

    Low-Power, Subthreshold Reference Circuits for the Space Environment : Evaluated with Îł-rays, X-rays, Protons and Heavy Ions

    Get PDF
    The radiation tolerance of subthreshold reference circuits for space microelectronics is presented. The assessment is supported by measured results of total ionization dose and single event transient radiation-induced effects under γ-rays, X-rays, protons and heavy ions (silicon, krypton and xenon). A high total irradiation dose with different radiation sources was used to evaluate the proposed topologies for a wide range of applications operating in harsh environments similar to the space environment. The proposed custom designed integrated circuits (IC) circuits utilize only CMOS transistors, operating in the subthreshold regime, and poly-silicon resistors without using any external components such as compensation capacitors. The circuits are radiation hardened by design (RHBD) and they were fabricated using TowerJazz Semiconductor’s 0.18 μm standard CMOS technology. The proposed voltage references are shown to be suitable for high-precision and low-power space applications. It is demonstrated that radiation hardened microelectronics operating in subthreshold regime are promising candidates for significantly reducing the size and cost of space missions due to reduced energy requirements.peerReviewe

    Single Event Transients and Pulse Quenching Effects in Bandgap Reference Topologies for Space Applications

    No full text
    An architectural performance comparison of bandgap voltage reference variants, designed in a 0.18 ÎĽm CMOS process, is performed with respect to single event transients. These are commonly induced in microelectronics in the space radiation environment. Heavy ion tests (Silicon, Krypton, Xenon) are used to explore the analog single-event transients and have revealed pulse quenching mechanisms in analogue circuits. The different topologies are compared, in terms of cross-section, pulse duration and pulse amplitude. The measured results, and the explanations behind the findings, reveal important guidelines for designing analog integrated circuits, which are intended for space applications. The paper includes an analysis on how pulse quenching occurs within the indispensable current mirror, which is used in every analog circuit.peerReviewe
    corecore