323 research outputs found

    Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable

    Get PDF
    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem

    Developmental changes in hypoxic exposure and responses to anoxia in Drosophila melanogaster

    Get PDF
    © 2015. Published by The Company of Biologists Ltd. Holometabolous insects undergo dramatic morphological and physiological changes during ontogeny. In particular, the larvae of many holometabolous insects are specialized to feed in soil, water or dung, inside plant structures, or inside other organisms as parasites where they may commonly experience hypoxia or anoxia. In contrast, holometabolous adults usually are winged and live with access to air. Here, we show that larval Drosophila melanogaster experience severe hypoxia in their normal laboratory environments; third instar larvae feed by tunneling into a medium without usable oxygen. Larvae move strongly in anoxia for many minutes, while adults (like most other adult insects) are quickly paralyzed. Adults survive anoxia nearly an order of magnitude longer than larvae (LT50: 8.3 versus 1 h). Plausibly, the paralysis of adults is a programmed response to reduce ATP need and enhance survival. In support of that hypothesis, larvae produce lactate at 3× greater rates than adults in anoxia. However, when immobile in anoxia, larvae and adults are similarly able to decrease their metabolic rate, to about 3% of normoxic conditions. These data suggest that Drosophila larvae and adults have been differentially selected for behavioral and metabolic responses to anoxia, with larvae exhibiting vigorous escape behavior likely enabling release from viscous anoxic media to predictably normoxic air, while the paralysis behavior of adults maximizes their chances of surviving flooding events of unpredictable duration. Developmental remodeling of behavioral and metabolic strategies to hypoxia/anoxia is a previously unrecognized major attribute of holometabolism

    HARDROC, Readout chip of the Digital Hadronic Calorimeter of ILC

    Get PDF
    HARDROC (HAdronic Rpc Detector ReadOut Chip) [1] is the very front end chip designed for the readout of the RPC or Micromegas foreseen for the Digital HAdronic CALorimeter (DHCAL) of the future International Linear Collider. The very fine granularity of the ILC hadronic calorimeters (1cm2 pads) implies a huge number of electronics channels (4 105 /m3) which is a new feature of “imaging” calorimetry. Moreover, for compactness, the chips must be embedded inside the detector making crucial the reduction of the power consumption to 10 μW per channel. This is achieved using power pulsing, made possible by the ILC bunch pattern (1 ms of data acquisition for 199 ms of dead time). HARDROC readout is a semi-digital readout with three thresholds which allows both good tracking and coarse energy measurement, and also integrates on chip data storage. The overall performance of HARDROC will be described with detailed measurements of all the characteristics. Hundreds of chips have indeed been produced and tested before being mounted on printed boards developed for the readout of large scale (1m2) RPC and Micromegas prototypes. These prototypes have been tested with cosmics and also in testbeam at CERN in 2008 and 2009 to evaluate the performance of different kinds of GRPCs and to validate the semi-digital electronics readout system in beam conditions

    SPIROC (SiPM Integrated Read-Out Chip): Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out.

    No full text
    Omega et Calice collaborationsInternational audienceThe SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memory content (time and charge on 2 gains). The data are then stored in a 4kbytes RAM. A very complex digital part has been integrated to manage all theses features and to transfer the data to the DAQ which is described on [2]. After an exhaustive description, the extensive measurement results of that new front-end chip will be presented

    SPIROC (SiPM Integrated Read-Out Chip): Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    Get PDF
    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memory content (time and charge on 2 gains). The data are then stored in a 4kbytes RAM. A very complex digital part has been integrated to manage all theses features and to transfer the data to the DAQ which is described on [2]

    SPIROC (SiPM Integrated Read-Out Chip): Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    Get PDF
    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memory content (time and charge on 2 gains). The data are then stored in a 4kbytes RAM. A very complex digital part has been integrated to manage all theses features and to transfer the data to the DAQ which is described on [2]. After an exhaustive description, the extensive measurement results of that new front-end chip will be presented

    Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter

    Get PDF
    A large prototype of 1.3m3 was designed and built as a demonstrator of the semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each unit is built of an active layer made of 1m2 Glass Resistive Plate Chamber(GRPC) detector placed inside a cassette whose walls are made of stainless steel. The cassette contains also the electronics used to read out the GRPC detector. The lateral granularity of the active layer is provided by the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a self-supporting mechanical structure built also of stainless steel plates which, with the cassettes walls, play the role of the absorber. The prototype was designed to be very compact and important efforts were made to minimize the number of services cables to optimize the efficiency of the Particle Flow Algorithm techniques to be used in the future ILC experiments. The different components of the SDHCAL prototype were studied individually and strict criteria were applied for the final selection of these components. Basic calibration procedures were performed after the prototype assembling. The prototype is the first of a series of new-generation detectors equipped with a power-pulsing mode intended to reduce the power consumption of this highly granular detector. A dedicated acquisition system was developed to deal with the output of more than 440000 electronics channels in both trigger and triggerless modes. After its completion in 2011, the prototype was commissioned using cosmic rays and particles beams at CERN.Comment: 49 pages, 41 figure

    Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome).

    Get PDF
    We report an allelic series of eight mutations in GATA2 underlying Emberger syndrome, an autosomal dominant primary lymphedema associated with a predisposition to acute myeloid leukemia. GATA2 is a transcription factor that plays an essential role in gene regulation during vascular development and hematopoietic differentiation. Our findings indicate that haploinsufficiency of GATA2 underlies primary lymphedema and predisposes to acute myeloid leukemia in this syndrome

    Micromegas for imaging hadronic calorimetry

    Full text link
    The recent progress in R&D of the Micromegas detectors for hadronic calorimetry including new engineering-technical solutions, electronics development, and accompanying simulation studies with emphasis on the comparison of the physics performance of the analog and digital readout is described. The developed prototypes are with 2 bit digital readout to exploit the Micromegas proportional mode and thus improve the calorimeter linearity. In addition, measurements of detection efficiency, hit multiplicity, and energy shower profiles obtained during the exposure of small size prototypes to radioactive source quanta, cosmic particles and accelerator beams are reported. Eventually, the status of a large scale chamber (1{\times}1 m2) are also presented with prospective towards the construction of a 1 m3 digital calorimeter consisting of 40 such chambers.Comment: 6 pages, 9 figures, CALOR2010 conferenc
    • …
    corecore