387 research outputs found

    P-selectin mediates metastatic progression through binding to sulfatides on tumor cells

    Get PDF
    Hematogenous carcinoma metastasis is associated with tumor cell emboli formation, which is now known to be facilitated by selectins. P-selectin-mediated interactions of platelets with cancer cells are based mostly on mucin- and glycosaminoglycan-type selectin ligands. We previously showed that mouse colon carcinoma cells (MC-38) carry P-selectin ligands of nonmucin origin, which were not identified. Here we show that P-selectin ligands recognized on MC-38 cells are sulfated glycolipids, thereby facilitating experimental metastasis in a syngeneic mouse model. Metabolic inhibition of sulfation by incubation of cells with sodium chlorate almost completely abrogated P-selectin binding. Metabolic labeling of MC-38 cells with (35)S sulfate revealed only a single band as detected by high-performance thin layer chromatography analysis of a total lipid extract. Matrix-assisted laser desorption/ionization tandem time-of-flight/time-of-flight analysis (MALDI-TOF-TOF) analysis of the purified sulfate-containing lipid fraction identified the selectin ligand to be a sulfated galactosylceramide SM4 (HSO(3)-3Galbeta-1Cer). Modulation of glycolipid biosynthesis in MC-38 cells altered P-selectin binding, thereby confirming sulfoglycolipids to be major P-selectin ligands. In addition, P-selectin was also found to recognize lactosylceramide sulfate SM3 (HSO(3)-3Galbeta-4Glcbeta-1Cer) and gangliotriaosylceramide sulfate SM2 [GalNAcbeta-4(HSO(3)-3)Galbeta-4Glcbeta-1Cer] in human hepatoma cells. Finally, the enzymatic removal of sulfation from the cell surface of MC-38 cells resulted in decreased P-selectin binding and led to attenuation of metastasis. Thus, SM4 sulfatide serves as a native ligand for P-selectin contributing to cell-cell interactions and to facilitation of metastasi

    NKCC1 downregulation induces hyperpolarizing shift of GABA responsiveness at near term fetal stages in rat cultured dorsal root ganglion neurons

    Get PDF
    GABA A receptor-mediated neurotransmission is greatly influenced by cation-chloride cotransporter activity during developmental stages. In embryonic neurons Na–K–2Cl (NKCC1) cotransporters mediate active chloride uptake, thus increasing the intracellular chloride concentration associated with GABA-induced depolarization. At fetal stages near term, oxytocin-induced NKCC1 downregulation has been implicated in the developmental shift from depolarizing to hyperpolarizing GABA action. Mature dorsal root ganglion neurons (DRGN), however, express high NKCC1 levels and maintain high intracellular chloride levels with consequent GABA-induced depolarization.Results: Gramicidin-perforated patch-clamp recordings were used to assess the developmental change in chloride homeostasis in rat cultured small DRGN at the embryonic day 16 (E16) and 19 (E19). The results were compared to data previously obtained in fetal DRGN at E14 and in mature cells. A significant NKCC1 downregulation, leading to reduction in excitatory GABAergic transmission, was observed at E16 and E19.Conclusion: These results indicate that NKCC1 activity transiently decreases in DRGN at fetal stages near term. This developmental shift in GABAergic transmission may contribute to fetal analgesia and neuroprotection at birth

    Influence of Temperature on Post-Breakage Behaviour of Laminated Glass Beams : Experimental Approach

    Get PDF
    The assessment of the post-breakage performances of laminated glass elementsused in construction need to take into account the sensitivity to the temperature ofthe mechanical behaviour and properties of the product, in particular of theinterlayer material. A general problem statement and an overview of differentexperimental approaches are firstly presented. Then results of specific orientationtests on pre-cracked laminated glass beams with a stiff interlayer of DuPont carriedat three different temperatures (23, 45 and 60°C) are presented and commented. Acomparison of the mechanical behaviour at the different temperatures is done,aiming to give a comprehensive order of magnitude of the sensitivity totemperature of the post-breakage behaviour observed during the tests

    N-Glycan structures and N-glycosylation sites of mouse soluble intercellular adhesion molecule-1 revealed by MALDI-TOF and FTICR mass spectrometry

    Get PDF
    Intercellular adhesion molecule-1 (ICAM-1) is a heavily N‐glycosylated transmembrane protein comprising five extracellular Ig-like domains. The soluble isoform of ICAM-1 (sICAM-1), consisting of its extracellular part, is elevated in the cerebrospinal fluid of patients with severe brain trauma. In mouse astrocytes, recombinant mouse sICAM-1 induces the production of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 induction is glycosylation dependent, as it is strongly enhanced when sICAM-1 carries sialylated, complex-type N-glycans as synthesized by wild-type Chinese hamster ovary (CHO) cells. The present study was aimed at elucidating the N-glycosylation of mouse sICAM-1 expressed in wild-type CHO cells with regard to sialylation, N-glycan profile, and N-glycosylation sites. Ion-exchange chromatography and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) of the released N-glycans showed that sICAM-1 mostly carried di- and trisialylated complex-type N-glycans with or without one fucose. In some sialylated N-glycans, one N-acetylneuraminic acid was replaced by N-glycolylneuraminic acid, and ∌4% carried a higher number of sialic acid residues than of antennae. The N-glycosylation sites of mouse sICAM-1 were analyzed by MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS and nanoLC-ESI-FTICR-MS of tryptic digests of mouse sICAM-1 expressed in the Lec1 mutant of CHO cells. All nine consensus sequences for N-glycosylation were found to be glycosylated. These results show that the N-glycans that enhance the MIP-2‐inducing activity of mouse sICAM-1 are mostly di- and trisialylated complex-type N-glycans including a small fraction carrying more sialic acid residues than antennae and that the nine N-glycosylation sites of mouse sICAM-1 are all glycosylate

    Necrostatin-1 Analogues: Critical Issues on the Specificity, Activity and In Vivo Use in Experimental Disease Models

    Get PDF
    Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∌100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models

    Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome

    Get PDF
    Arterial tortuosity syndrome (ATS) is an autosomal recessive disorder characterized by tortuosity, elongation, stenosis and aneurysm formation in the major arteries owing to disruption of elastic fibers in the medial layer of the arterial wall1. Previously, we used homozygosity mapping to map a candidate locus in a 4.1-Mb region on chromosome 20q13.1 (ref. 2). Here, we narrowed the candidate region to 1.2 Mb containing seven genes. Mutations in one of these genes, SLC2A10, encoding the facilitative glucose transporter GLUT10, were identified in six ATS families. GLUT10 deficiency is associated with upregulation of the TGFb pathway in the arterial wall, a finding also observed in Loeys-Dietz syndrome, in which aortic aneurysms associate with arterial tortuosity3. The identification of a glucose transporter gene responsible for altered arterial morphogenesis is notable in light of the previously suggested link between GLUT10 and type 2 diabetes4,5. Our data could provide new insight on the mechanisms causing microangiopathic changes associated with diabetes and suggest that therapeutic compounds intervening with TGFb signaling represent a new treatment strategy

    SEAS: A System for SEED-Based Pathway Enrichment Analysis

    Get PDF
    Pathway enrichment analysis represents a key technique for analyzing high-throughput omic data, and it can help to link individual genes or proteins found to be differentially expressed under specific conditions to well-understood biological pathways. We present here a computational tool, SEAS, for pathway enrichment analysis over a given set of genes in a specified organism against the pathways (or subsystems) in the SEED database, a popular pathway database for bacteria. SEAS maps a given set of genes of a bacterium to pathway genes covered by SEED through gene ID and/or orthology mapping, and then calculates the statistical significance of the enrichment of each relevant SEED pathway by the mapped genes. Our evaluation of SEAS indicates that the program provides highly reliable pathway mapping results and identifies more organism-specific pathways than similar existing programs. SEAS is publicly released under the GPL license agreement and freely available at http://csbl.bmb.uga.edu/~xizeng/research/seas/

    Beyond gene-disease validity: capturing structured data on inheritance, allelic-requirement, disease-relevant variant classes, and disease mechanism for inherited cardiac conditions

    Get PDF
    Background: As the availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including secondary findings. Methods: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. Results: For 36/65 gene-disease pairs, loss of function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using the CardiacG2P dataset as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. Conclusions: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is a pre-requisite for scalable genomic testing
    • 

    corecore