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Abstract

Mucopolysaccharidosis IVA (MPS IVA or Morquio A ssrome) is a lysosomal storage
disease caused by the deficiency of N-acetylgadaohine-6-sulfate sulfatase (GALNS),
leading to lysosomal storage of keratan sulfate) (&®1 chondroitin-6-sulfate. Currently,
enzyme replacement therapy (ERT) using an enzyoduped in CHO cells represents the
main treatment option for MPS IVA patients. As dilermative, we reported the production
of an active GALNS enzyme produced in the ydaishia pastoris(prGALNS), which
showed internalization by cultured cells througpogential receptor-mediated process and
similar post-translational processing as human mezyn this study, we further studied the
therapeutic potential of prGALNS through the chsrazation of the N-glycosylation
structure,in-vitro cell uptake and KS reduction, aimdvivo biodistribution and generation
of anti-prGALNS antibodies. Taken together, thessults represent an important step in
the develop of &. pastorisbased platform for production of a therapeutic G¥_for

MPS IVA ERT.

Keywords: Morquio A, Mucopolysaccharidosis IV A, GALNSPichia pastoris

glycosylations
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1. INTRODUCTION

Mucopolysaccharidosis type IVA (MPS IVA, Morquio gyndrome, OMIM 253000) is a
genetic spondyloepipheseal dysplasia caused bytiongain the gene encoding for the
lysosomal enzyme N-acetylgalactosamine-6-sulfaliatage (GALNS, EC 3.1.6.4) [1, 2].
GALNS is involved in the intracellular degradatiofh the glycosaminoglycans (GAGS)
chondroitin-6-sulfate (C6S) and keratan sulfate (K&ALNS deficiency leads to
lysosomal accumulation of C6S and KS [1, 2]. Chiliy, MPS IVA patients are

characterized by short stature, corneal cloudiggpplasia of the odontoid proceggctus

carinatum valvular heart disease, mild hepatomegaly, lagftjoints, kyphoscoliosis, and
genu valgunwithout central nervous system impairment [1,T3patment of these patients
was only symptomatic and supportive, and patiefinaequire surgical correction of the

skeletal abnormalities to give them a better quaiitlife [3, 4].

The first specific therapy for MPS IVA patients wagproved in 2014, consisting of the
intravenous administration of a recombinant enzyrmluced in CHO cells (elosulfase
alfa) at 2 mg/kg weekly [5]. The cellular uptaketlois recombinant enzyme occurs through
mannose-6-phosphate receptors (M6PR) [6)r7ivo studies on wild-type mice showed
that the enzyme is detected in the growth platarthalve tissues, and hepatocytes with a
high dose and high administraton frequency (5 iofus of 10 mg/kg every other day) [7].
ERT with a recombinant enzyme on MPS IVA mice pded a limited imptact on bone
pathology, while the use of a bone-targeting GAL&Bianced the therapeutic efficacy in
bone pathology [6, 8]. Phase Il studies showetldhaeekly intravenous administration of
2.0mg/kg during 24 weeks allowed a slight improvemarthe 6-minute walk test and the

reduction of urinary KS [9], as well as an improwh in the maximal voluntary

3



71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

ventilation, performance of daily life activitiesnd height/growth rate [10]. Despite of this,
elosulfase alfa still has several constraints idiclg: i) limited effect on skeletal, corneal,
and heart valvular tissues [11, 12], ii) a shorzyene half-life and rapid clearance, iii)
immune response [13], and iv) the need of weekbyhurs infusions. This restricts the use
of this therapy due to cost-effectiveness concemmelosulfase alfg14]. Limitations of
current therapy indicate an unmet need for newafteutic strategies to improve and

expand the treatment options for MPS IVA patients.

To overcome some of above mentioned ERT issuémsitbeen alternatively proposed to
produce recombinant GALNS in other hosts [15, 18]fact, several human lysosomal
enzymes have been produced in plant cells, trarnsgammals, and microorganisms
including Escherichia coli Saccharomyces cerevisjd@ichia pastoris Yarrowia lipolytica
and Ogataea minutd17-20]. Among these hosts, yeasts represent aortant platform
for the production of recombinant proteins sinogytiban grow in low-cost culture media,
are easily manipulated, secrete the recombinanteiprdo the medium, and produce
heterologous proteins with similar post-translaglomodifications (e.g. disulfide bonds and
N-glycosylations) to those observed in human pnstdl]. These characteristics are
important since it has been demonstrated that GANN§ycosylations are not required to
produce an active enzyme, but for protein cellul@take [22]. Although yeast N-
glycosylations have some differences in size andposition in comparison with those
observed in human proteins, these N-glycosylaticars be glyco-engineered to produce
tailored or homogeneous structures [23]. Furtheemorecombinant humanp-
hexosaminidases [16, 24};glucosidase [25], and lysosomal acid lipase [28,®oduced

in the yeastP. pastoris have shown dose-dependent cell uptake withoutaaltjtional
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processing of their N-glycosylations, although tisisnostly true for macrophage-lineage

cells that express mannose receptors.

Previously, we reported the characterization otimdén recombinant GALNS produced in
the methylotrophic yeadP. pastorisGS115 (prGALNS). This protein showed a high
stability at pH 5.0 and low temperature (4°C), é@sdactivity was enhanced when it was
co-expressed with the sulfatase modifier factoSWNIF1) cDNA. Furthermoren vitro
assays showed that prGALNS was taken up by HEK288 and human skin fibroblasts
through a process potentially mediated by an erntdopathway [28]. In this study, we
further studied the therapeutic potential of prGA_Mrough the characterization of the N-
glycosylation structurdn-vitro cell uptake and KS reduction, and the evaluatioim-@ivo

biodistribution and generation of anti-prGALNS #&aidlies.

2. MATERIALS AND METHODS
2.1 Bioreactor cultures

A P. pastorisGS115 (Invitrogen, Thermo Fisher Scientific, Sase] CA, USA) strain,
previously transformed with the human GALNS and S®IMEC 3.10.1.1) cDNAs [28],
was used to produce prGALNS. Cultures were perfdriatel.69. scale in a KLF 3.L
reactor (Bioengineering AG, Switzerland) using adified fermentation medium FM22
(composition per liter: KpPO, 25.74g, (NH,).SO, 39, K:SO, 8.58g, CaSQ 2H,0 0.6g,
glycerol 409, MgSQ 7H,0O 7.02g, Biotin 4x 10°% wi/v, supplemented with Pichia trace

minerals PTM4 1.0nL) [29]. Protein production was first done in atdbaculture with



115  glycerol followed by a fed-batch induction phasehwinethanol, as previously described.

116  Cultures were done at 268 and pH 5.0, under limited oxygen conditions,igi©6h [28].
117 2.2 Crude protein extracts and enzyme purification

118  prGALNS was purified from culture medium followiragpreviously reported protocol [28].
119  Briefly, culture medium (~1.EZ) was filtered sequentially through 0.45 and Ou22 using
120  polyether sulphone membranes (Pall Corp, Port Wdgstm, NY, USA). Permeate was
121 ultra-filtrated through a 3KDa cut-off membrane (Millipore, Billerica, MA, USAThen,
122  the retentate was dialyzed in acetate buffer 25p¥5.0. Finally, prGALNS was purified
123 by a two-step process using a cation exchange atography followed by size exclusion
124  chromatography, as previously described [22, 28&cttons with the highest GALNS
125  activity were pooled, diafiltrated against 25 mMison acetate pH 5.0, and lyophilized.

126 Protein purification was monitored by SDS—-PAGE &ALNS activity.
127 2.3 N-glycans analysis and exoglycosidase digestion

128  Samples for N-glycan analyses were obtained fraenstipernatant d?. pastoriscultures

129 at 2 mL scale grown in BMGY medium (yeast extraist i/v; peptone 2% p/v; potassium
130  phosphate 10M pH 6.0; yeast nitrogen base 1.34%: biotin 40 %; glycerol 1%) and
131 cultured for 2 at 28°C and 200RPM. Cells were recovered and resuspended in BMMY
132 medium (potassium phosphate O™ pH 6.0; yeast nitrogen base 1.34%; biotin
133 4x10°%; methanol 0.5%), and cultured for W8urs at 28C and 20RPM. N-glycans
134  were labeled with 8-aminopyrene-1.3.6-trisulphaaa (APTS, Sigma Aldrich, St. Louis,
135 MO, USA) according to a published method [30]. hkkd glycans were prepared by

136  blotting on 96-well plate with PVDF membrane plaiddillipore, Bedford, UK), and
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analyzed by carbohydrate electrophoresis with lashrced fluorescence detection (CE-
LIF) using an ABI 3130 DNA sequencer as previousiyorted [30]. N-glycans structures
are reported according to Jacobs et al. [31], wheduthe same glycosylation analysis

methodology used in the present study.
2.4 GALNS activity

GALNS activity was assayed by using 4-methylumbelil-B-D-galactopyranoside-6-
sulfate (Toronto Chemicals Research, North York, GBnada) as substrate [26]. One unit
(U) was defined as the amount of enzyme catalyziveg production of hmol of 4-
methylumbelliferone product per hour. Specific GA&Mctivity was expressed as U Thg

of protein as determined by BCA assay (Pierce™ mibescientific. Rockford, USA).
2.5 Cellular uptake of recombinant GALNS

The cellular uptake of prGALNS was assayed in HEX2@lls (ATCC CRL1573) and
human skin MPS IVA fibroblasts, as previously déssi [22]. Cells were maintained in
Dulbecco’s modified medium (DMEM, Gibco, CarlsbadA) supplemented with fetal
bovine serum 15% (Eurobio, Les Ulis, Francia), piiim 100U mL™ and streptomycin
100U mL™* (Walkersville, MD, USA), at 37C in a CQ incubator. Twenty-four hours
before the experiment,¥10° cells per well were seeded in 12-well plates, #redculture
medium was replaced with fresh mediurh Before the experiment. The purified enzyme
was added to a final concentration ofrB@ in HEK293 and 50, 100, and 26M in MPS
IVA fibroblasts [22, 28]. Assays with HEK293 ceNgere performed with and without
mannose-6-phosphate (M6P) or methyD-mannopyranoside as inhibitors of M6P and

mannose receptor, respectively, at a final conagotr of 2 mM, according to a reported
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study for recombinant GALNS produced in CHO celB?][ After 6h incubation, the
culture medium was removed and the cells were wh#mee times with cold 1x PBS.
Cells were lysed using 1% sodium deoxycholate (Sigddrich, St. Louis, MO, USA).
The enzyme activity was determined in the cell tgsall assays were performed in

triplicate.
2.6 Intracellular trafficking

HEK293 cells were cultured on coverslips at 2%aélls per well, previously treated with
0.01% (w/v) type Il collagen (Sigma-Aldrich, St. Wis, MO, USA), with complete DMEM
medium, as described above. Culture medium wasgeglwith fresh mediumt before
the experiment and prGALNS, previously labeled whtaxaFluor 568 (Molecular Probes,
Thermo Fisher Scientific, San Jose, CA, USA) adogrdo manufacturer's protocol, was
added at a final concentration of 50 nM. After 18fhincubation with the labeled enzyme,
the lysosomes were stained with Lysotracker® Gi2RD-26 (Molecular Probes, Thermo
Fisher Scientific, San Jose, CA, USA) following tmanufacturer’s protocol. Cells were
then fixed using freshly prepared 4% paraformaldehin 1x PBS for 20 min at room
temperature. The cellular nucleus was stained with6-diamidino-2-phenylindole
dichydrochloride (DAPI, Thermo Fisher Scientificart Jose, CA, USA). Cells were
imaged using an Olympus FV1000 confocal microscegpapped with 405, 473 and 559
nm laser lines using a 63x/1.49 NA oil objectiveAR (excitation 382-393, emission 417-
477 nm), FITC (excitation 460-500 nm, emission 580-nm) and TRITC HyQ filter sets
(excitation 530-560 nm, emission 590-650 nm) wengpliad to collect DAPI,
Lysotracker® Green, and Alexa 568 signals, respelgti Images were processed by using

NIH Image J 1.8.0 [33].
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2.71n vitro keratan sulfate clearance assay

MPS IVA skin fibroblasts were cultured and treateth 50, 100, and 200 nM of purified
prGALNS. Quantification of di-KS in the cell lysateas done by liquid chromatography
coupled to a tandem mass spectrometry (LC-MS/MS)praviously described [34, 35],
with some modifications. Briefly, 200 ul of celltexct were placed into a 96 well Omega
10 K filter plate (AcroPrep™, PALL Corporation, NYSA) and then centrifuged for 15
min at 2500xg. All samples and standards were @& at 37°C overnight with
chondroitinase B, heparitinase, and keratanasesdikadgaku Co., Okyo, Japan). After
incubation, the disaccharides were collected byrdegation for 15 min at 2500 xg, and
analyzed by LC-MS/MS following a standardized pomid35]. All assays were performed
in triplicate. Experiments were carried out at NemsdAlfred I. duPont Hospital for

Children (Wilmington, DE, USA), under approved mraadls.
2.8 Enzyme biodistribution

According to Tomatsu et al. [32], male C57BL/6 wiighe mice (7-8 weeks old) received a
single intravenous administration of 1x PBS or 5 kyj' of prGALNS labeled with
AlexaFluor 568 (Molecular Probes, Thermo FishereS8ific, San Jose, CA, USAMice
were sacrificed at 12 and 24 h post-infusion. Braing, heart, liver, spleen, kidney, and
bone (femur) were collected and immersion-fixed 1@% neutral buffered formalin,
embedded in paraffin and sectioned (Laboratoryath&ogy, Hospital Universitario San
Ignacio, Bogota D.C., Colombia). Tissues were sdddy fluorescence microscopy for

enzyme distribution. All procedures were carried authe Biology Comparative Unit at
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Pontificia Universidad Javeriana, in accordancdhe Institutional Animal Care and Use

Committee guidelines under approved protocols.
2.9 Immunization of mice and detection of anti-prGA.NS antibodies.

To evaluate immunogenicity of prGALNS, male C57BWw#d-type mice (7-8 weeks old)
received 5 mg kg of prGALNS or 1x PBS weekly during 4 weeks (n=5% geoup). The
prGALNS was diluted in 1x PBS and injected intrawesly through the lateral tail vein.
Blood samples were taken at 0, 15, and 30 daysipision. All procedures were carried
out at the Biology Comparative Unit at Pontificiani\dersidad Javeriana, in accordance
with the Institutional Animal Care and Use Comndttguidelines under approved
protocols. An indirect ELISA was used to determargibody generation in serum from
mice immunized with prGALNS. For this purpose, 96Hwlates were coated overnight at
37 °C with 10ug mL* of purified prGALNS in PBS pH 7.4. Wells were bked for 2 h at
37°C with 1x PBS pH 7.4, 0.05% Tween 20 and 5% fadrdry milk. The plates were
washed two times with PBST (1x PBS pH7.4, 0.05% dw20). One hundred. of serum
dilutions, between 1:100 and 1:5000 in PBST andrs¥t-fat dry milk, were added to the
wells and incubated at 37 °C for 1 h. After thr&&SFP washes, a peroxidase conjugated
goat anti-mouse 1gG (A9044 Sigma- Aldrich, St. l9uWO, USA) was added to the wells
in a 1:2000 dilution and plates were incubated7aC3for 1 h. The reaction was developed
with TMB Sure Blue substrate (KPL, Milford. MA, U3Aand incubated at room
temperature for 10 min. The reaction was stoppdet WN HCI and the plate was read at

450 nm on an Anthos 2020 ELISA plate reader.

2.10 Statistical analysis

10
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Differences between groups were tested for stegistsignificance by using two-way
ANOVA and Tukey's multiple comparison test. An errdevel of 5% (p<0.05) was
considered significant. All analyses were performesing GraphPad Prism v.7.0

(GraphPad Software, La Jolla, California, USA). keults are shown as mea8D.

3. RESULTS AND DISCUSSION

3.1 N-Glycosylation structure

N-glycans analysis performed in the culture supamtaof wild-typeP. pastorisGS115
revealed a N-glycosylation profile consisting ofmain peak of 9 mannose residues)M
and subsequent peaks representing additional mamessdues>Mio) (Figure 1B). In
contrast, in the prGALNS-producing strain, a stemgypermannosylation pattern was
observed, characterized by an increase in the ameedof peaks corresponding tqoNnd
M1 (Figure 1C). The N-glycosylation pattern of the prGALNS-puothg strain was
characterized by the presence of signals that stggither phospho-mannosyl
phosphorylation (mono- or double-mannosyl phosplatey N-glycans) or terminal
phosphorylationKigure 1C). A similar N-glycosylation pattern was observedthe strain
co-expressing GALNS and SUMFEigure 1D), suggesting that co-expression of SUMF1
does not affect the N-glycosylation as observedCHO-produced GALNS due to the
changes in cell uptake of SUM1-activated GALNS [dpltodextrin was used as glucose
units referenceRigure 1A) and RNAse B N-glycans were used as referencehifygir-

mannose glycans-{gure 1E).
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The Man 1sGIcNAC, pattern observed in prGALNS agrees with previoeports for
proteins produced ifP. pastoris[26, 36]. This profile is closer to the mammalili
glycosylation than that observed in proteins preduin Saccharomyces cerevisjaghich

is characterized by hypermannosylated glycan spdeiglan) [37, 38]. Nevertheless, the
N-glycosylation pattern observed . pastorisGS115 evidenced several differences in
terms of complexity with the typical mammalian Nagbsylation. For instance, iR.
pastoris the N-glycan structure is mainly composed by nogen while mammalian N-
glycans display a variety of monosaccharide umttheir structure, especially sialic acid,
fucose, and galactose, among others [26, 39, 40hrAadditional finding, we observed the
presence of phosphorylated glycans in prGALNSgire 1 C and D. However,
phosphorylations reported inP. pastoris are characterized by capped
mannosylphosphorylations contrasting to the typismmalian terminal mannose-6-
phosphate residues [41]. For this reason, it has Ipeoposed thaichia derived proteins
for therapeutic uses may need further enzymatatrtrent to uncap and expose the M6P

residues [41].

N-glycosylation has been associated with stabilitymunogenicity, internalization,
efficacy, and biodistribution of proteins [42-48owever, implications of the mentioned in
N-glycosylation patterns between mammalian &dpastorisGS115 are still not well
understood [36]. Although yeast hypermannosylatedlyidans have been suggested to
trigger immune response, no detailed study has pegarmed to evaluate such association
[36]. Conversely, low amounts of oligomannose stmes (Mag.g) have been reported in
human plasma proteins [45], as well as in approssmbinant proteins for different

lysosomal storage disorders [42, 44, 46]. The yagylation profile of elosulfase alfa

12
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revealed that the dominant N-glycan species areP-Blan, BisP-Man, and non-
phosphorylated Marand Man. In addition, no complex, hybrid glycans or otkelic acid
containing glycans were also detected in elosulédtse]47]. Taken together, the N-glycans
analysis of prGALNS confirm the potential & pastorisas expression system for the
development of an alternative ERT for MPS IVA. Téigmotential could be enhanced by
tailoring the N-glycans [23], which could improvelicstability, cell uptake and therapeutic

efficacy [41].

3.2 Cell uptake and intracellular trafficking

Previously, we reported that prGALNS can be intkzed by human skin fibroblasts from
unaffected individuals and HEK293 cells throughogeptial endocytic pathway [28]. Here,
we further explored the mechanism for prGALNS in&dization. Cell capture assays were
performed in the presence of selective inhibitdrthe main receptors associated with the
internalization of lysosomal enzymes: M6PR or maenieceptor (MR) [7, 26, 32, 42, 44,
48, 49]. The results suggest that prGALNS is iraézed using both M6PR and MR, since
addition of inhibitors for these receptors sigrafitly reduced the cell uptake of the

recombinant enzymé-{gure 2A).

Based on the prGALNS N-glycosylation pattern démiabove, it was expected that the
high content of oligomannose glycans favor intecacwith the MR, which is in good
agreement with the results observed for other lysas proteins produced iA. pastoris
plants, and mog26, 50-52]. The role of the M6PR in the internatinn of yeast produced

enzymes, to the best of our knowledge, has not bi@ectly assessed. This is of great
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importance, especially considering that we obsepaaks suggesting capped non-terminal
phosphomannosyl glycans (D-mannes&-phospho-6-D-mannose) in prGALNSidure

1), which is similar to that reported far-galactosidase and-glucosidase produced in
Pichia pastoris and Yarrowia lipolytica, respectively [41]. Nonetheless, further
characterization of M6PR interactions with thegeety/of mannosyl phosphorylations are
required to better understand the internalizati@cmanism used bk. pastorisproduced

enzymes.

We observed that both M6PR and MR inhibitors ditladaolish completely the prGALNS
internalization Figure 2A). These findings suggest that the enzyme may &kso
internalized through a M6PR/MR-independent pathwdthough other mechanisms have
been proposed for lysosomal enzymes internalizati@se remain poorly understood [53,
54]. However, regardless of the mechanism, we @bdethat the internalized prGALNS
co-localized with the lysosomal stainirfggure 2C, Pearson correlation R = 0.56), similar
to previous reports for the recombinant GALNS pti in CHO cells [7, 55] and

iduronate-2-sulfatase producedRnpastorig20].

In the second stage, we explored the ability of AltSS to be taken up by MPS IVA
patients skin fibroblasts. As shown kiigure 2B, the cellular uptake of prGALNS in the
fibroblasts showed a similar pattern to that regbrior HEK293 cells [28], with clear
increment in the intracellular GALNS activity pds¢atment in a dose-dependent manner.
However, this change was only statistically sigmifit at the highest used dose of the
recombinant enzyme (200 nM) in contrast to HEK29Bere statistically significant
differences were observed using 50 nM of prGALNSCcIS behavior may reflect the

differences that occur in the internalization apilof different cell types for the same

14



314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

protein [56-59]. These differences have been aatmtiwith changes in expression level of

receptors and the effect of N-glycosylation vasaon the cellular uptake process [56-59].

To evaluate the therapeutic potential of prGALN®, measured the di-KS levels in MPS
IVA skin fibroblasts treated with 50, 100, and 2@ of prGALNS (equivalent to 6 to 24
pg) . Similar amounts of recombinant GALNS produaedHO cells were used both-
vitro (0.78 to 200 nM) [7, 32] anih-vivo (0.24 to 24 pg) [6, 7]As observed ifrigure 3,
there was a significant reduction in the intradaludi-KS levels after treatment with
prGALNS for all of the evaluated doses. A reductignto 81% of accumulated di-KS was
obtained using 100 nM of prGALNS. Similar behaviwas observed in MPS IVA
chondrocytes with the enzyme produced in CHO ¢ediduction of KS accumulation 80 —
100%), using a lower enzyme concentration (1 andMI}) which might be related to the
higher specific enzyme activity levels reported fbat enzyme (120,000 U my [7].
Nonetheless, our results suggest that Ehepastorisproduced enzyme is not only
structurally but also functionally similar to therman enzyme, which makes it a potential

option for therapeutic purposes.

3.3 Biodistribution

We evaluated tissue distribution of prGALNS aftesimgle IV of 5 mg kg (83.5 U kg),

in wild-type C57BL/6 mice. Twelve-hours post-treatm, it was observed that prGALNS
was mainly localized in spleen, liver, and hearhiley after 24 hours the enzyme was
detected in spleen, heart, and kidnEig(re 4). There was no presence of the recombinant

enzyme in brain, growth plate or bone tissue. Theselts suggest a rapid clearance of the
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357

enzyme by highly perfused tissues, which is in egrent with a previous report of
intravenous administration of recombinant GALNSdwoed in CHO cells [32]. In MPS
IVA, the main affected tissues include cardiac ealviung, and cartilage (growth plate),
making these tissues the main target for any tleertap approach [7, 8, 60]. Our results
show that prGALNS preferentially reaches viscerajans. However, the therapeutic
implications of such behavior might not be propersgessed by single infusion since other
studies suggest that higher doses (10 mg/kg) gmehted administration may saturate the

enzyme in liver and spleen and allow the distritnutio other tissues [7].

3.4 Generation of anti-prGALNS antibodies

To analyze the generation of anti-prGALNS antibsdieild-type C57BL/6 mice were
weekly infused with 5 mg Kg of prGALNS and the anti-prGALNS antibodies were
assayed after 15 and 30 days into the immunizategimen. Anti-prGALNS IgG
antibodies were only evaluated, since this is tlanmnsotype found in other studies using
exogenous lysosomal enzymes in different animatiepd61-63]. The results showed the
production of anti-prGALNS antibodies with an ineseng trend along timd={gure 5), as
would be expected by the difference in human ands®edGALNS, since these proteins
share a 85% identity [64]. The results are aboet @mler of magnitude lower than those
reported in C57BI/6 MPS IVA knock-out mice infusedth a recombinant GALNS
produced in CHO cells [64]. Since a higher amounprotein was infused in the present
study (5 mg kg) than in recombinant GALNS produced in CHO cedisdut 1.5 mg K9,

we can speculate that prGALNS could have a sinmfanunogenicity compared to CHO
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cell-produced enzyme. In addition, similar reswitsre observed in mice treated with a
human recombinant lysosomal acid lipase (hLAL) piecet! inNicotiana benthamiang65].
The authors showed thanhti-hLAL antibodies were produced against bothcgbylated and
deglycosylated recombinant hLAL, suggesting that the antibodies are mainly produced against

the protein backbone rather than to the N-glycAneecent report showed that, in mice, similar
antibodies titers are produced against plant-or malman-derived lysosomab-L-
iduronidase [66]. In the same way, Kreer et. aF],[@leveloped a direct comparison of
immunogenicity between N-glycosylated and. de-giytated proteins produced Richia
pastoris The results showed that N-glycosylated proteiither influenced dendritic cells
maturation nor their general capacity to activateells, pointing out that enforced N-
glycosylation does not increase the immunogenioityan antigenper se They also
observed a strong IgG response after injectionesglgicosylated protein; while protein-
specific IgGs were hardly detectable after immutnbrawith the N-glycosylated protein,
suggesting that N-glycosylations may prevent MHGeHtricted presentation of the
recombinant protein. Taken together, we considarahti-prGALNS antibodies are mainly
produced against protein backbone rather thanetdNtglycans. Nevertheless, anti-GALNS
antibodies have been reported in 100% of the patizeated with elosulfase alfa [13],
suggesting that other factors could be involvedtiie immune response against the
recombinant protein. However, up to now, theredsarclear correlation between antibody
production and therapeutic efficacy of ERT [68].this sense, further studies are need to
characterization antibody production against prGALNroduced, as well as studies

addressing the effect of such antibodies on treattm@sponse.
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4. CONCLUSIONS

In this study, we have characterized the N-glycatsyh structure of a recombinant
GALNS produced in the yeaBt pastorisGS115 and evaluatenh vitro andin vivo, some
therapeutic characteristics of this recombinantyere In vitro, it was observed that
prGALNS presented mainly yeast-type high-mannosgnshand mannosylphosphorylated
derivatives thereof. This recombinant protein wascessfully internalized by mammalian
cells reaching the lysosome. The internalized emzywas able to clear the stored
intracellular di-KS in MPS IVA patients fibroblast$n addition, thein-vivo results
suggested that prGALNS is rapidly cleared fromdhganism. In summary, these findings
show the potential oP. pastorisas a yeast platform for the production of a theutis
human recombinant enzyme for MPS IVA. Future wosk®uld aim to improve the
enzyme activity, as well as biodistribution andg&ing of prGALNS to main affected
tissues in MPS IV A. The rise of some level of airtig antibodies over time for this
human protein in the mouse experimental model nezde taken into account for long-

term treatment model studies.
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Figure legends

Figure 1. N-glycan profile of P. pastoris strains. A. Maltodextrin reference. B-D. N-
glycan profile of the proteins present in growthdmen of P. pastorisGS115 (B)P.
pastoris GS115::GALNS (C) andP. pastoris GS115::GALNS-SUMF1 (D). *
monomannosyl phosphorylated N-glycans; ** doubleanasyl phosphorylated N-glycans.
E. Reference N-glycans from bovine RNase B.

Figure 2. Internalization and trafficking of prGALN S in mammalian cells A. Cellular
uptake assayed in cultured HEK293 after treatmeith WO nM prGALNS with and
without inhibitors. B. Cellular uptake assayed irP# IVA patients fibroblasts after
treatment with different concentrations of prGALNBssays were performed in by
triplicate. * p < 0.05. C. Intracellular trafficking in HEK293 t=ltreated with prGALNS
labeled with Alexa Fluor 568. Scale bar 50um. Rearorrelation value was calculated by
Fiji (Image J) with R = 0.56 (above threshold) ahtesholded Mander's coefficients tM1
and tM2 were 0.975 and 0.533, respectively.

Figure 3. Quantitation of KS in MPS IVA fibroblasts treated with prGALNS. MPS
IVA patient skin fibroblast were treated with 5@01 and 200 nM of prGALNS and the KS
levels were quantified by LC-MS/MS. Results areorégd as fold to untreated MPS IVA
fibroblast (blue). * p < 0.05 .

Figure 4. Biodistribution of prGALNS . Male C57BL/6 mice (7-8 weeks old) received a
single intravenous administration of 1x PBS (coijitos 5 mg kg* of prGALNS labeled
with AlexaFluor 568 Histological sections of spleéwuer, heart and kidney were taken at
12 and 24 h post-treatment. Scale bar 100um.

Figure 5. Generation of anti-prGALNS antibodies. Wild-type C57BL/6 mice were
weekly infused 1x PBS or 5 mg Kgof prGALNS and the anti-prGALNS antibodies were
assayed in serum samples after 15 and 30 dayghatanmunization regimen (n=5 per

group).
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