103 research outputs found

    M-Branes and Metastable States

    Full text link
    We study a supersymmetry breaking deformation of the M-theory background found in arXiv:hep-th/0012011. The supersymmetric solution is a warped product of R^{2,1} and the 8-dimensional Stenzel space, which is a higher dimensional generalization of the deformed conifold. At the bottom of the warped throat there is a 4-sphere threaded by \tilde{M} units of 4-form flux. The dual (2+1)-dimensional theory has a discrete spectrum of bound states. We add p anti-M2 branes at a point on the 4-sphere, and show that they blow up into an M5-brane wrapping a 3-sphere at a fixed azimuthal angle on the 4-sphere. This supersymmetry breaking state turns out to be metastable for p / \tilde{M} < 0.054. We find a smooth O(3)-symmetric Euclidean bounce solution in the M5-brane world volume theory that describes the decay of the false vacuum. Calculation of the Euclidean action shows that the metastable state is extremely long-lived. We also describe the corresponding metastable states and their decay in the type IIA background obtained by reduction along one of the spatial directions of R^{2,1}.Comment: 33 pages, 5 figures; v2 note adde

    Exact results for static and radiative fields of a quark in N=4 super Yang-Mills

    Full text link
    In this work (which supersedes our previous preprint arXiv:1112.2345) we determine the expectation value of the N=4$ SU(N) SYM Lagrangian density operator in the presence of an infinitely heavy static particle in the symmetric representation of SU(N), by means of a D3-brane probe computation. The result that we obtain coincides with two previous computations of different observables, up to kinematical factors. We argue that these agreements go beyond the D-brane probe approximation, which leads us to propose an exact formula for the expectation value of various operators. In particular, we provide an expression for the total energy loss by radiation of a heavy particle in the fundamental representation.Comment: 14 pages. This submission supersedes our previous preprint arXiv:1112.2345. v2: numerical factors fixed, minor clarifications, added reference

    D-Branes on the Conifold and N=1 Gauge/Gravity Dualities

    Full text link
    We review extensions of the AdS/CFT correspondence to gauge/ gravity dualities with N=1 supersymmetry. In particular, we describe the gauge/gravity dualities that emerge from placing D3-branes at the apex of the conifold. We consider first the conformal case, with discussions of chiral primary operators and wrapped D-branes. Next, we break the conformal symmetry by adding a stack of partially wrapped D5-branes to the system, changing the gauge group and introducing a logarithmic renormalization group flow. In the gravity dual, the effect of these wrapped D5-branes is to turn on the flux of 3-form field strengths. The associated RR 2-form potential breaks the U(1) R-symmetry to Z2MZ_{2M} and we study this phenomenon in detail. This extra flux also leads to deformation of the cone near the apex, which describes the chiral symmetry breaking and confinement in the dual gauge theory.Comment: Based on I.R.K.'s lectures at the Les Houches Summer School Session 76, ``Gravity, Gauge Theories, and Strings'', August 2001, 42 pages, v2: clarifications and references adde

    The influence of D-branes' backreaction upon gravitational interactions between open strings

    Full text link
    We argue that gravitational interactions between open strings ending on D3-branes are largely shaped by the D3-branes' backreaction. To this end we consider classical open strings coupled to general relativity in Poincare AdS5 backgrounds. We compute the linear gravitational backreaction of a static string extending up to the Poincare horizon, and deduce the potential energy between two such strings. If spacetime is non-compact, we find that the gravitational potential energy between parallel open strings is independent of the strings' inertial masses and goes like 1/r at large distance r. If the space transverse to the D3-branes is suitably compactified, a collective mode of the graviton propagates usual four-dimensional gravity. In that case the backreaction of the D3-branes induces a correction to the Newtonian potential energy that violates the equivalence principle. The observed enhancement of the gravitational attraction is specific to string theory; there is no similar effect for point-particles.Comment: 28 pages, 7 figures. Typos corrected, minor addition

    Writing CFT correlation functions as AdS scattering amplitudes

    Full text link
    We explore the Mellin representation of conformal correlation functions recently proposed by Mack. Examples in the AdS/CFT context reinforce the analogy between Mellin amplitudes and scattering amplitudes. We conjecture a simple formula relating the bulk scattering amplitudes to the asymptotic behavior of Mellin amplitudes and show that previous results on the flat space limit of AdS follow from our new formula. We find that the Mellin amplitudes are particularly useful in the case of conformal gauge theories in the planar limit. In this case, the four point Mellin amplitudes are meromorphic functions whose poles and their residues are entirely determined by two and three point functions of single-trace operators. This makes the Mellin amplitudes the ideal objects to attempt the conformal bootstrap program in higher dimensions.Comment: 23 pages + appendice

    Absorption of scalars by nonextremal charged black holes in string theory

    Get PDF
    We analyze the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes in string theory, namely the D1–D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section always has the form of some parameter of the solution divided by the black hole Hawking temperature. We also verify in each case that, despite its explicit temperature dependence, such quotient is finite in the extremal limit, giving a well defined cross section. We show that this precise explicit temperature dependence also arises in the same cross section for black holes with string \alpha' corrections: it is actually induced by them.This work has been supported by FEDER funds through Programa Operacional Fatores de Competitividade – COMPETE and by Fundação para a Ciência e a Tecnologia (FCT) through projects EstC/MAT/UI0013/2011 and CERN/FP/123609/2011

    Conformal field theories in anti-de Sitter space

    Get PDF
    In this paper we discuss the dynamics of conformal field theories on anti-de Sitter space, focussing on the special case of the N=4 supersymmetric Yang-Mills theory on AdS_4. We argue that the choice of boundary conditions, in particular for the gauge field, has a large effect on the dynamics. For example, for weak coupling, one of two natural choices of boundary conditions for the gauge field leads to a large N deconfinement phase transition as a function of the temperature, while the other does not. For boundary conditions that preserve supersymmetry, the strong coupling dynamics can be analyzed using S-duality (relevant for g_{YM} >> 1), utilizing results of Gaiotto and Witten, as well as by using the AdS/CFT correspondence (relevant for large N and large 't Hooft coupling). We argue that some very specific choices of boundary conditions lead to a simple dual gravitational description for this theory, while for most choices the gravitational dual is not known. In the cases where the gravitational dual is known, we discuss the phase structure at large 't Hooft coupling.Comment: 57 pages, 1 figure. v2: fixed typo

    Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories

    Full text link
    Using localization, matrix model and saddle-point techniques, we determine exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge theories. Focusing at planar and large `t Hooft couling limits, we compare its asymptotic behavior with well-known exponential growth of Wilson loop in N=4 super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential growth -- at most, it can grow a power of `t Hooft coupling. For theory with gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two Wilson loops associated with two gauge groups. We find Wilson loop in untwisted sector grows exponentially large as in N=4 super Yang-Mills theory. We then find Wilson loop in twisted sector exhibits non-analytic behavior with respect to difference of two `t Hooft coupling constants. By letting one gauge coupling constant hierarchically larger/smaller than the other, we show that Wilson loops in the second type theory interpolate to Wilson loop in the first type theory. We infer implications of these findings from holographic dual description in terms of minimal surface of dual string worldsheet. We suggest intuitive interpretation that in both type theories holographic dual background must involve string scale geometry even at planar and large `t Hooft coupling limit and that new results found in the gauge theory side are attributable to worldsheet instantons and infinite resummation therein. Our interpretation also indicate that holographic dual of these gauge theories is provided by certain non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic changes, v4. published versio

    Wilson loops stability in the gauge/string correspondence

    Full text link
    We study the stability of some classical string worldsheet solutions employed for computing the potential energy between two static fundamental quarks in confining and non-confining gravity duals. We discuss the fixing of the diffeomorphism invariance of the string action, its relation with the fluctuation orientation and the interpretation of the quark mass substraction worldsheet needed for computing the potential energy in smooth (confining) gravity background. We consider various dual gravity backgrounds and show by a numerical analysis the existence of instabilities under linear fluctuations for classical string embedding solutions having positive length function derivative L′(r0)>0L'(r_0)>0. Finally we make a brief discussion of 't Hooft loops in non-conformal backgrounds.Comment: 34 pages, 36 figures. Reference added. Final version JHEP accepte
    • …
    corecore