5 research outputs found

    Investigating The Retention Of Bright And Dark Ejecta From Small Rayed Craters On Mars

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2010Impact cratering is one of the principal geologic processes operating throughout the solar system. On Mars, small rayed impact craters (SRC) form continuously and randomly on the surface. Ejecta retention, the timespan and ability of excavated ejecta to remain in place around a crater rim, records a lineage of recent surface processes. However, the timescales under which small rayed craters are produced and their origin, whether terrestrial or cosmic, plays an important role in further investigating surface processes and possible recent climate variations. By examining thousands of randomly chosen panchromatic images from the Mars Orbiter Camera Narrow Angle (MOCNA) camera, a population of 630 SRC was catalogued across three equatorial and two polar regions on Mars. The survey of MOCNA images also revealed intriguing Enigmatic Linear Features (ELFs) in the northern hemisphere of Mars, which a short side study revealed to be a unique form of dust-devil track. From statistically examining several physical parameters, dust deposition and periglacial erosion were found to be the major factors affecting ejecta retention for the SRC. SRC morphology revealed ejecta retention sequences that followed four stages of ejecta retention from the initial impact to eventual erasure from the surface. By reconstructing the current cratering rate from estimates of atmospheric filtering, it was possible to calculate the ejecta retention age across Mars. In general, SRC ejecta are retained on the surface for <100 ka. Based on ejecta morphology and retention age estimates, a possible shift from depositional to erosional processes just south of the Martian equator is suspected to have occurred within this timeframe

    Planet Four: Terrains - Discovery of Araneiforms Outside of the South Polar Layered Deposits

    Full text link
    We present the results of a systematic mapping of seasonally sculpted terrains on the South Polar region of Mars with the Planet Four: Terrains (P4T) online citizen science project. P4T enlists members of the general public to visually identify features in the publicly released Mars Reconnaissance Orbiter CTX images. In particular, P4T volunteers are asked to identify: 1) araneiforms (including features with a central pit and radiating channels known as 'spiders'); 2) erosional depressions, troughs, mesas, ridges, and quasi-circular pits characteristic of the South Polar Residual Cap (SPRC) which we collectively refer to as 'Swiss cheese terrain', and 3) craters. In this work we present the distributions of our high confidence classic spider araneiforms and Swiss cheese terrain identifications. We find no locations within our high confidence spider sample that also have confident Swiss cheese terrain identifications. Previously spiders were reported as being confined to the South Polar Layered Deposits (SPLD). Our work has provided the first identification of spiders at locations outside of the SPLD, confirmed with high resolution HiRISE imaging. We find araneiforms on the Amazonian and Hesperian polar units and the Early Noachian highland units, with 75% of the identified araneiform locations in our high confidence sample residing on the SPLD. With our current coverage, we cannot confirm whether these are the only geologic units conducive to araneiform formation on the Martian South Polar region. Our results are consistent with the current CO2 jet formation scenario with the process exploiting weaknesses in the surface below the seasonal CO2 ice sheet to carve araneiform channels into the regolith over many seasons. These new regions serve as additional probes of the conditions required for channel creation in the CO2 jet process. (Abridged)Comment: accepted to Icarus - Supplemental data files are available at https://www.zooniverse.org/projects/mschwamb/planet-four-terrains/about/results - Icarus print version available at http://www.sciencedirect.com/science/article/pii/S001910351730055

    Distribution of primary and secondary features in the Pahrump Hills outcrop (Gale crater, Mars) as seen in a Mars Descent Imager (MARDI) "sidewalk" mosaic

    No full text
    The Mars Science Laboratory Curiosity rover conducted a reconnaissance traverse across the Pahrump Hills outcrop within Gale crater from Sols 780–797. During the traverse, the Mars Descent Imager (MARDI) acquired a continuous imaging record of primary and secondary sedimentary features throughout the outcrop. The characteristics of the features (laminae, resistant features, fractures, gray clasts) and their spatial distribution provide insight into the processes that contributed to the formation of Pahrump Hills. Thin, regular laminae (mm-scale) are ubiquitous in the bedrock, implying that depositional processes at that scale did not change appreciably during deposition of the mudstone succession at Pahrump Hills. Higher bedrock slopes correlate with undulatory bedrock surfaces, bedrock with elevated Mg contents, and fractures exhibiting wide, raised edges. These collective features are consistent with increased erosional resistance caused by greater quantities of erosionally-resistant, Mg-bearing cement within the bedrock permitted by coarser grain sizes. Resistant features exhibit a range of morphologies, elevated Mg contents, and do not deflect laminae within the bedrock. Their characteristics implicate the involvement of Mg-enriched fluids in a late diagenetic overprint affecting the bedrock. The variations of fracture fill and edge morphologies and chemistries further suggest repeated fracturing and fluid interaction events within the strata exposed at Pahrump Hills. Gray clasts strongly resemble fragments eroded from sandstone horizons interspersed throughout the Pahrump Hills outcrop
    corecore