31 research outputs found

    Investigating The Retention Of Bright And Dark Ejecta From Small Rayed Craters On Mars

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2010Impact cratering is one of the principal geologic processes operating throughout the solar system. On Mars, small rayed impact craters (SRC) form continuously and randomly on the surface. Ejecta retention, the timespan and ability of excavated ejecta to remain in place around a crater rim, records a lineage of recent surface processes. However, the timescales under which small rayed craters are produced and their origin, whether terrestrial or cosmic, plays an important role in further investigating surface processes and possible recent climate variations. By examining thousands of randomly chosen panchromatic images from the Mars Orbiter Camera Narrow Angle (MOCNA) camera, a population of 630 SRC was catalogued across three equatorial and two polar regions on Mars. The survey of MOCNA images also revealed intriguing Enigmatic Linear Features (ELFs) in the northern hemisphere of Mars, which a short side study revealed to be a unique form of dust-devil track. From statistically examining several physical parameters, dust deposition and periglacial erosion were found to be the major factors affecting ejecta retention for the SRC. SRC morphology revealed ejecta retention sequences that followed four stages of ejecta retention from the initial impact to eventual erasure from the surface. By reconstructing the current cratering rate from estimates of atmospheric filtering, it was possible to calculate the ejecta retention age across Mars. In general, SRC ejecta are retained on the surface for <100 ka. Based on ejecta morphology and retention age estimates, a possible shift from depositional to erosional processes just south of the Martian equator is suspected to have occurred within this timeframe

    Planet Four: Terrains - Discovery of Araneiforms Outside of the South Polar Layered Deposits

    Full text link
    We present the results of a systematic mapping of seasonally sculpted terrains on the South Polar region of Mars with the Planet Four: Terrains (P4T) online citizen science project. P4T enlists members of the general public to visually identify features in the publicly released Mars Reconnaissance Orbiter CTX images. In particular, P4T volunteers are asked to identify: 1) araneiforms (including features with a central pit and radiating channels known as 'spiders'); 2) erosional depressions, troughs, mesas, ridges, and quasi-circular pits characteristic of the South Polar Residual Cap (SPRC) which we collectively refer to as 'Swiss cheese terrain', and 3) craters. In this work we present the distributions of our high confidence classic spider araneiforms and Swiss cheese terrain identifications. We find no locations within our high confidence spider sample that also have confident Swiss cheese terrain identifications. Previously spiders were reported as being confined to the South Polar Layered Deposits (SPLD). Our work has provided the first identification of spiders at locations outside of the SPLD, confirmed with high resolution HiRISE imaging. We find araneiforms on the Amazonian and Hesperian polar units and the Early Noachian highland units, with 75% of the identified araneiform locations in our high confidence sample residing on the SPLD. With our current coverage, we cannot confirm whether these are the only geologic units conducive to araneiform formation on the Martian South Polar region. Our results are consistent with the current CO2 jet formation scenario with the process exploiting weaknesses in the surface below the seasonal CO2 ice sheet to carve araneiform channels into the regolith over many seasons. These new regions serve as additional probes of the conditions required for channel creation in the CO2 jet process. (Abridged)Comment: accepted to Icarus - Supplemental data files are available at https://www.zooniverse.org/projects/mschwamb/planet-four-terrains/about/results - Icarus print version available at http://www.sciencedirect.com/science/article/pii/S001910351730055

    The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission

    Get PDF
    This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ∌1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context

    The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission

    Get PDF
    This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ∌1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context

    Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars

    No full text
    Abstract This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200 m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4 billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3 km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240 Ky

    Field Geologic Mapping of Sample Sites from the Ground and the Air with Perseverance Rover and Ingenuity Helicopter

    No full text
    International audienceOne of the primary mission goals for Perseverance is to determine the geologic context of sample sites [1]. Rover-based (in situ) or field geologiccontext mapping (GXM) based on Perseverance rover and Ingenuity helicopter observations provides a nearly continuous record of geologic context and exposed surface structure over a 120 m-wide corridor along the traverse of Perseverance and the flight path of Ingenuity. Field geologic mapping along the traverse and flight path and outcrop-scale mapping at sample sites provides a spatial dimension to ground truth geologic, stratigraphic, and modern environmental context for samples at scales relevant to sample interpretation. Here we provide an abbreviated overview of field mapping as it relates to documenting the architecture of the Jezero fan and geologic context of several examples of sample locations

    Field Geologic Mapping of Sample Sites from the Ground and the Air with Perseverance Rover and Ingenuity Helicopter

    No full text
    International audienceOne of the primary mission goals for Perseverance is to determine the geologic context of sample sites [1]. Rover-based (in situ) or field geologiccontext mapping (GXM) based on Perseverance rover and Ingenuity helicopter observations provides a nearly continuous record of geologic context and exposed surface structure over a 120 m-wide corridor along the traverse of Perseverance and the flight path of Ingenuity. Field geologic mapping along the traverse and flight path and outcrop-scale mapping at sample sites provides a spatial dimension to ground truth geologic, stratigraphic, and modern environmental context for samples at scales relevant to sample interpretation. Here we provide an abbreviated overview of field mapping as it relates to documenting the architecture of the Jezero fan and geologic context of several examples of sample locations

    Visiting a fresh crater in Jezero with the Mars 2020 Perseverance Rover

    No full text
    Fresh craters provide an opportunity for close examination into the subsurface for landed missions. Adziilii crater is one of many fresh craters with extant ejecta within Jezero crater, the field site for the Mars 2020 Perseverance rover, formed in the unit termed Crater Floor- Fractured Rough (CF-Fr) which comprises much of the Jezero crater floor. This ~80x70 m elliptical crater has a depth/diameter ratio of 0.05 consistent with a low-angle secondary impact. Considering two similar appearing elongated impact craters lying to the southwest and southeast of the landing site, Adziilii crater is probably part of a secondary crater cluster. Meter scale-sized blocks line the Adziilii crater rim out to one crater radii to the north and south. Such asymmetric ejecta distribution is also related to shallow impact angles. Several sharp-rimmed kilometer diameter craters, for example the 2 km diameter Dacono crater east of Adziilii, are close enough to have been the source for ejecta blocks traveling at sub-hypervelocity. In the case of Dacono, a mere 320-350 m/s initial velocity at an ejection angle ranging from 30-45 degrees can loft an ejecta block the ~28 km distance to form Adziilii crater. Excavation depths of a crater this size are approximately 3-5 meters. Some larger ejecta blocks seen in Mastcam-Z images exhibit unique vesicular, sometimes ropey, textures different from the surrounding dusty low-lying rocks nearby and appear rougher than similar dark toned, smooth textured blocks examined by the Perseverance rover. Observations from the rover’s ground penetrating radar system (RIMFAX) reveal at least one higher density subsurface transition at about 3-5 m depth. Given the unique textures and excavation depths, there’s potential these blocks represent a unique buried surface. While the ejecta block textures are consistent with a geologic unit with a volcanic origin, as are several subsurface structures, the pattern is also consistent with aeolian erosion as seen in Gale Crater rocks at Rocknest. It is also possible the unique lithologic characteristics hint at impactor fragment survivability, more likely in a low velocity impact. However, if the source crater is local, the differences in lithology may be small or unobservable. Future observations of fresh impact craters along the rover's traverse should help elucidate more subsurface stratigraphy of the crater floor and other buried units examined by Perseverance at the surface
    corecore