4,156 research outputs found
The interaction between gaze and facial expression in the amygdala and extended amygdala is modulated by anxiety
Behavioral evidence indicates that angry faces are seen as more threatening, and elicit greater anxiety, when directed at the observer, whereas the influence of gaze on the processing of fearful faces is less consistent. Recent research has also found inconsistent effects of expression and gaze direction on the amygdala response to facial signals of threat. However, such studies have failed to consider the important influence of anxiety on the response to signals of threat; an influence that is well established in behavioral research and recent neuroimaging studies. Here, we investigated the way in which individual differences in anxiety would influence the interactive effect of gaze and expression on the response to angry and fearful faces in the human extended amygdala. Participants viewed images of fearful, angry and neutral faces, either displaying an averted or direct gaze. We found that state anxiety predicted an increased response in the dorsal amygdala/substantia innominata (SI) to angry faces when gazing at, relative to away from the observer. By contrast, high state anxious individuals showed an increased amygdala response to fearful faces that was less dependent on gaze. In addition, the relationship between state anxiety and gaze on emotional intensity ratings mirrored the relationship between anxiety and the amygdala/SI response. These results have implications for understanding the functional role of the amygdala and extended amygdala in processing signals of threat, and are consistent with the proposed role of this region in coding the relevance or significance of a stimulus to the observer
Alien Registration- Calder, Ross P. (Durham, Androscoggin County)
https://digitalmaine.com/alien_docs/30047/thumbnail.jp
Trend-based analysis of a population model of the AKAP scaffold protein
We formalise a continuous-time Markov chain with multi-dimensional discrete state space model of the AKAP scaffold protein as a crosstalk mediator between two biochemical signalling pathways. The analysis by temporal properties of the AKAP model requires reasoning about whether the counts of individuals of the same type (species) are increasing or decreasing. For this purpose we propose the concept of stochastic trends based on formulating the probabilities of transitions that increase (resp. decrease) the counts of individuals of the same type, and express these probabilities as formulae such that the state space of the model is not altered. We define a number of stochastic trend formulae (e.g. weakly increasing, strictly increasing, weakly decreasing, etc.) and use them to extend the set of state formulae of Continuous Stochastic Logic. We show how stochastic trends can be implemented in a guarded-command style specification language for transition systems. We illustrate the application of stochastic trends with numerous small examples and then we analyse the AKAP model in order to characterise and show causality and pulsating behaviours in this biochemical system
Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Deflagration to Detonation Density
We explore the effects of the deflagration to detonation transition (DDT)
density on the production of Ni-56 in thermonuclear supernova explosions (type
Ia supernovae). Within the DDT paradigm, the transition density sets the amount
of expansion during the deflagration phase of the explosion and therefore the
amount of nuclear statistical equilibrium (NSE) material produced. We employ a
theoretical framework for a well-controlled statistical study of
two-dimensional simulations of thermonuclear supernovae with randomized initial
conditions that can, with a particular choice of transition density, produce a
similar average and range of Ni-56 masses to those inferred from observations.
Within this framework, we utilize a more realistic "simmered" white dwarf
progenitor model with a flame model and energetics scheme to calculate the
amount of Ni-56 and NSE material synthesized for a suite of simulated
explosions in which the transition density is varied in the range 1-3x10^7
g/cc. We find a quadratic dependence of the NSE yield on the log of the
transition density, which is determined by the competition between plume rise
and stellar expansion. By considering the effect of metallicity on the
transition density, we find the NSE yield decreases by 0.055 +/- 0.004 solar
masses for a 1 solar metallicity increase evaluated about solar metallicity.
For the same change in metallicity, this result translates to a 0.067 +/- 0.004
solar mass decrease in the Ni-56 yield, slightly stronger than that due to the
variation in electron fraction from the initial composition. Observations
testing the dependence of the yield on metallicity remain somewhat ambiguous,
but the dependence we find is comparable to that inferred from some studies.Comment: 15 pages, 13 figures, accepted to ApJ on July 6, 201
White Dwarf Mergers on Adaptive Meshes I. Methodology and Code Verification
The Type Ia supernova progenitor problem is one of the most perplexing and
exciting problems in astrophysics, requiring detailed numerical modeling to
complement observations of these explosions. One possible progenitor that has
merited recent theoretical attention is the white dwarf merger scenario, which
has the potential to naturally explain many of the observed characteristics of
Type Ia supernovae. To date there have been relatively few self-consistent
simulations of merging white dwarf systems using mesh-based hydrodynamics. This
is the first paper in a series describing simulations of these systems using a
hydrodynamics code with adaptive mesh refinement. In this paper we describe our
numerical methodology and discuss our implementation in the compressible
hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson
equation for self-gravity, and couples the gravitational and rotation forces to
the hydrodynamics. Standard techniques for coupling gravitation and rotation
forces to the hydrodynamics do not adequately conserve the total energy of the
system for our problem, but recent advances in the literature allow progress
and we discuss our implementation here. We present a set of test problems
demonstrating the extent to which our software sufficiently models a system
where large amounts of mass are advected on the computational domain over long
timescales. Future papers in this series will describe our treatment of the
initial conditions of these systems and will examine the early phases of the
merger to determine its viability for triggering a thermonuclear detonation.Comment: Accepted for publication in the Astrophysical Journa
The "where" of social attention: Head and body direction aftereffects arise from representations specific to cue type and not direction alone.
Human beings have remarkable social attention skills. From the initial processing of cues, such as eye gaze, head direction, and body orientation, we perceive where other people are attending, allowing us to draw inferences about the intentions, desires, and dispositions of others. But before we can infer why someone is attending to something in the world we must first accurately represent where they are attending. Here we investigate the "where" of social attention perception, and employ adaptation paradigms to ascertain how head and body orientation are visually represented in the human brain. Across two experiments we show that the representation of two cues to social attention (head and body orientation) exists at the category-specific level. This suggests that aftereffects do not arise from "social attention cells" discovered in macaques or from abstract representations of "leftness" or "rightness.
- …