6 research outputs found

    DNA-Based Arthropod Diversity Assessment in Amazonian Iron Mine Lands Show Ecological Succession Towards Undisturbed Reference Sites

    Get PDF
    Human activities change natural landscapes, and in doing so endanger biodiversity and associated ecosystem services. To reduce the net impacts of these activities, such as mining, disturbed areas are rehabilitated and restored. During this process, monitoring is important to ensure that desired trajectories are maintained. In the Carajás region of the Brazilian Amazon, exploration for iron ores has transformed the original ecosystem; natural forest and a savanna formation with lateritic iron duricrust outcrops named canga. Here, native vegetation is logged and topsoil removed and deposited in waste piles along with mine waste. During rehabilitation, these waste piles are hydroseeded with non-native plant species to achieve rapid revegetation. Further, seeds of native canga and forest plant species are planted to point ecological succession towards natural ecosystems. In this study, we investigate diversity and composition of the arthropod community along a post-mining rehabilitation and restoration gradient, taking seasonality and primer bias into account. We use DNA metabarcoding of bulk arthropod samples collected in both the dry and rainy seasons from waste-pile benches at various stages of revegetation: non-revegetated exposed soils, initial stage with one-to-three-year-old stands, intermediate stage with four-to-five-year-old stands, and advanced stage with six-to-seven-year-old stands. We use samples from undisturbed cangas and forests as reference sites. In addition, we vegetation diversity and structure were measured to investigate relations between arthropod community and vegetation structure. Our results show that, over time, the arthropod community composition of the waste piles becomes more similar to the reference forests, but not to the reference cangas. Nevertheless, even the communities in the advanced-stage waste piles are different from the reference forests, and full restoration in these highly diverse ecosystems is not achieved, even after 6 to 7 years. Finally, our results show seasonal variation in arthropod communities and primer bias

    Distinct Reproductive Strategy of Two Endemic Amazonian Quillworts

    No full text
    We examined the reproductive strategy of two Amazonian quillworts (Isoëtes cangae and Isoëtes serracarajensis), endemic and threatened species of canga ecosystems. Sexual propagation was examined by in vitro fertilization assays, while asexual propagation was examined by tiller emission. Isoëtes cangae is an outcrossing species that reproduces exclusively by spore germination and is able to propagate by self- and cross-fertilization. Isoëtes serracarajensis reproduces asexually by emitting tillers from the plant corm, despite producing male and female sporangia. These distinct reproductive strategies in the different species may be linked to their contrasting habitats. Isoëtes cangae inhabit a permanent oligotrophic lake with mild environmental changes, while I. serracarajensis are found in temporary ponds facing severe seasonal drought, where asexual propagation may represent an adaptive advantage to the short growth period during access to water. We also observed different relationships between plant growth and reproductive traits between the species, despite their common production of sporophytes with high survival rates. Together, these results are of paramount importance for establishing conservation plans for both species considering the advantages of sexual propagation to maintain the genetic diversity of I. cangae and the diligent management required to do the same with asexually propagated I. serracarajensis

    Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance.

    No full text
    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions

    A hydraulic model is compatible with rapid changes in leaf elongation rate under fluctuating evaporative demand and soil water status.

    Get PDF
    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction with a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half times, 30 min vs 1-2 h). The morning decline of LER began at very low light and transpiration, and closely followed the stomatal opening of leaves receiving direct light which represent a small fraction of leaf area. A simulation model suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of ZmPIPs aquaporins. Transgenic lines under-producing ABA, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than that of WT plants. Whole genome transcriptome and phosphoproteome suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, mechanisms and models presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture

    Potential Distribution of Pilocarpus microphyllus in the Amazonia/Cerrado Biomes under Near-Future Climate Change Scenarios

    No full text
    Pilocarpus microphyllus Stapf. ex Wardlew. (Rutaceae) is an endemic and threatened medicinal plant species from tropical Brazil. Popularly known as “jaborandi”, it is the unique natural source of pilocarpine, an alkaloid used to medical treat glaucoma and xerostomia. Based on Species Distribution Models (SDMs), we modeled the suitability of P. microphyllus’s geographical distribution considering three Global Circulation Models (GCMs) under two future climate change scenarios (SSP2-4.5 and SSP5-8.5). The quantitative analyses carried out using ten different SDM algorithms revealed that precipitation seasonality (Bio15) and precipitation of the driest month (Bio14) were the most important bioclimatic variables. The results evidenced four main key areas of continuous occurrence of the plant spreading diagonally over tropical Brazilian biomes (Amazon, Cerrado and Caatinga). The near-future (2020 to 2040) ensemble projections considering all GCMs and scenarios have indicated negative impacts for the potential loss or significant reduction in suitable habitats for P. microphyllus in the transition region between the Amazon and Cerrado into central and northern Maranhão state, and mainly in the Caatinga biome over the northern Piaui state. On the other hand, positive impacts of the expansion of the plant habitat suitability are projected over forest cover protected areas of the Amazon biome in the southeastern Pará state. Since the jaborandi is of socioeconomic importance for many families in the north/northeast Brazil, it is urgent to implement public policies for conservation and sustainable management, thus mitigating the impacts of global climate change
    corecore