1,510 research outputs found

    First principle theory of correlated transport through nano-junctions

    Get PDF
    We report the inclusion of electron-electron correlation in the calculation of transport properties within an ab initio scheme. A key step is the reformulation of Landauer's approach in terms of an effective transmittance for the interacting electron system. We apply this framework to analyze the effect of short range interactions on Pt atomic wires and discuss the coherent and incoherent correction to the mean-field approach.Comment: 5 pages, 3 figure

    Alternate islands of multiple isochronous chains in wave-particle interactions

    Full text link
    We analyze the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a standing electrostatic wave. We show that a pulsed wave produces an infinite number of perturbative terms with the same winding number, which may generate islands in the same region of phase space. As a consequence, the number of isochronous island chains varies as a function of the wave parameters. We observe that in all the resonances, the number of chains is related to the amplitude of the various resonant terms. We determine analytically the position of the periodic points and the number of island chains as a function of the wave number and wave period. Such information is very important when one is concerned with regular particle acceleration, since it is necessary to adjust the initial conditions of the particle to obtain the maximum acceleration.Comment: Submitte

    Phase separation in asymmetrical fermion superfluids

    Full text link
    Motivated by recent developments on cold atom traps and high density QCD we consider fermionic systems composed of two particle species with different densities. We argue that a mixed phase composed of normal and superfluid components is the energetically favored ground state. We suggest how this phase separation can be used as a probe of fermion superfluidity in atomic traps.Comment: 9 pages, LaTeX2e, version to appear in Phys.Rev.Let

    Dexamethasone-induced and estradiol-induced CREB activation and annexin 1 expression in CCRF-CEM lymphoblastic cells: evidence for the involvement of cAMP and p38 MAPK.

    Get PDF
    AIMS: Annexin 1 (ANXA1), a member of the annexin family of calcium-binding and phospholipid-binding proteins, is a key mediator of the anti-inflammatory actions of steroid hormones. We have previously demonstrated that, in the human lymphoblastic CCRF-CEM cell line, both the synthetic glucocorticoid hormone, dexamethasone (Dex), and the estrogen hormone, 17beta-estradiol (E2beta), induce the synthesis of ANXA1, by a mechanism independent of the activation of their nuclear receptors. Recently, it was reported that the gene coding for ANXA1 contains acAMP-responsive element (CRE). In this work, we investigated whether Dex and E2beta were able to induce the activation of CRE binding proteins (CREB) in the CCRF-CEM cells. Moreover, we studied the intracellular signalling pathways involved in CREB activation and ANXA1 synthesis in response to Dex and E2beta; namely, the role of cAMP and the p38 mitogen activated protein kinase (MAPK). RESULTS: The results show that Dex and E2beta were as effective as the cAMP analogue, dBcAMP, in inducing CREB activation. On the contrary, dBcAMP induced ANXA1 synthesis as effectively as these steroid hormones. Furthermore, the cAMP antagonist, Rp-8-Br-cAMPS, and the specific p38 MAPK inhibitor,SB203580, effectively prevented both Dex-induced, E2beta-induced and dBcAMP-induced CREB activation and ANXA1 synthesis. CONCLUSIONS: Taken together, our results suggest that,in CCRF-CEM cells, Dex-induced and E2beta-inducedANXA1 expression requires the activation of the transcription factor CREB, which in turn seems to be mediated by cAMP and the p38 MAPK. These findings also suggest that, besides the nuclear steroid hormone receptors, other transcription factors, namely CREB, may play important roles in mediating the anti-inflammatory actions of glucocorticoids and oestrogen hormone

    Dexamethasone prevents interleukin-1beta-induced nuclear factor-kappaB activation by upregulating IkappaB-alpha synthesis, in lymphoblastic cells.

    Get PDF
    AIMS: Glucocorticoids (GCs) exert some of their anti-inflammatory actions by preventing the activation of the transcription factor nuclear factor (NF)-kappaB. The GC-dependent inhibition of NF-kappaB may occur at different levels, but the mechanisms involved are still incompletely understood. In this work, we investigated whether the synthetic GC, dexamethasone (Dex), modulates the activity of NF-kappaB in the lymphoblastic CCRF-CEM cell line. We also evaluated the ability of Dex to prevent the activation of NF-kappaB in response to the potent proinflammatory cytokine, interleukin (IL)-1beta. RESULTS: Exposure of the cells to Dex (1 microM) induced the rapid degradation of IkappaB-alpha, leading to the transient translocation of the NF-kappaB family members p65 and p50 from the cytoplasm to the nucleus, as evaluated by western blot. Electrophoretic mobility shift assays revealed that, in the nucleus, these NF-kappaB proteins formed protein-DNA complexes, indicating a transient activation of NF-kappaB. Additionally, Dex also induced de novo synthesis of IkappaB-alpha, following its degradation. Finally, when the cells were exposed to Dex (1 microM) prior to stimulation with IL-1beta (20 ng/ml), Dex was efficient in preventing IL-1beta-induced NF-kappaB activation. The GC antagonist, RU 486 (10 microM), did not prevent any of the effects of Dex reported here. CONCLUSION: Our results indicate that, in CCRF-CEM cells, Dex prevents NF-kappaB activation, induced by IL-1beta, by a mechanism that involves the upregulation of IkappaB-alpha synthesis, and that depends on the early and transient activation of NF-kappaB

    Melanin nanoparticles as a promising tool for biomedical applications – a review

    Get PDF
    Melanin is a biopolymer of easy and cheap availability that can be found among the living organisms and excels for its biocompatibility and biodegradability properties, along with scavenging abilities, metal chelation and electronic conductance. This biomaterial can act as a nanocarrier or agent itself to be used in diverse biomedical applications, such as imaging, controlled drug release, bioengineering and bioelectronics, antioxidant applications and theranostics. In this review, the melanin source and structure, its physicochemical properties, melanin-like polymers as well as the differences among those will be elucidated. The focus will be the discussion of the current approaches that apply melanin nanoparticles (MNPs) and melanin-like nanoparticles (MLNPs) in the biomedical field, to which promising capabilities have been attributed, regarding optoelectronic, photoconductivity and photoacoustic. The use of these nanoparticles, in the last 10 years, in topics as drug delivery or theranostics will be detailed and the major achievements will be discussed. Overall, we anticipate that melanin can drive us toward a new paradigm in medical diagnostics and treatments, since applying melanin features possibly its use as a theranostics nanocarrier agent, not only for diagnostics, but also for photothermal therapy and controlled drug release through chemotherapy.VM Correlo would like to acknowledge FROnTHERA (NORTE-01–0145-FEDER-0000232) project. RRebelo would like to acknowledge BREAST-IT PTDC/BTM-ORG/28168/2017 project
    corecore