952 research outputs found

    An ensemble approach to the analysis of weighted networks

    Get PDF
    We present a new approach to the calculation of measures in weighted networks, based on the translation of a weighted network into an ensemble of edges. This leads to a straightforward generalization of any measure defined on unweighted networks, such as the average degree of the nearest neighbours, the clustering coefficient, the `betweenness', the distance between two nodes and the diameter of a network. All these measures are well established for unweighted networks but have hitherto proven difficult to define for weighted networks. Further to introducing this approach we demonstrate its advantages by applying the clustering coefficient constructed in this way to two real-world weighted networks.Comment: 4 pages 3 figure

    Statistical entropy of the Schwarzschild black hole

    Get PDF
    We derive the statistical entropy of the Schwarzschild black hole by considering the asymptotic symmetry algebra near the I−\cal{I^{-}} boundary of the spacetime at past null infinity. Using a two-dimensional description and the Weyl invariance of black hole thermodynamics this symmetry algebra can be mapped into the Virasoro algebra generating asymptotic symmetries of anti-de Sitter spacetime. Using lagrangian methods we identify the stress-energy tensor of the boundary conformal field theory and we calculate the central charge of the Virasoro algebra. The Bekenstein-Hawking result for the black hole entropy is regained using Cardy's formula. Our result strongly supports a non-local realization of the holographic principleComment: 3 pages no figure

    Invasion Percolation with Temperature and the Nature of SOC in Real Systems

    Full text link
    We show that the introduction of thermal noise in Invasion Percolation (IP) brings the system outside the critical point. This result suggests a possible definition of SOC systems as ordinary critical systems where the critical point correspond to set to 0 one of the parameters. We recover both IP and EDEN model, for T→0T \to 0, and T→∞T \to \infty respectively. For small TT we find a dynamical second order transition with correlation length diverging when T→0T \to 0.Comment: 4 pages, 2 figure

    Backbone of complex networks of corporations: The flow of control

    Full text link
    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.Comment: 24 pages, 12 figures, 2nd version (text made more concise and readable, results unchanged

    Dynamics of Fractures in Quenched Disordered Media

    Full text link
    We introduce a model for fractures in quenched disordered media. This model has a deterministic extremal dynamics, driven by the energy function of a network of springs (Born Hamiltonian). The breakdown is the result of the cooperation between the external field and the quenched disorder. This model can be considered as describing the low temperature limit for crack propagation in solids. To describe the memory effects in this dynamics, and then to study the resistance properties of the system we realized some numerical simulations of the model. The model exhibits interesting geometric and dynamical properties, with a strong reduction of the fractal dimension of the clusters and of their backbone, with respect to the case in which thermal fluctuations dominate. This result can be explained by a recently introduced theoretical tool as a screening enhancement due to memory effects induced by the quenched disorder.Comment: 7 pages, 9 Postscript figures, uses revtex psfig.sty, to be published on Phys. Rev.

    Waiting time dynamics of priority-queue networks

    Full text link
    We study the dynamics of priority-queue networks, generalizations of the binary interacting priority queue model introduced by Oliveira and Vazquez [Physica A {\bf 388}, 187 (2009)]. We found that the original AND-type protocol for interacting tasks is not scalable for the queue networks with loops because the dynamics becomes frozen due to the priority conflicts. We then consider a scalable interaction protocol, an OR-type one, and examine the effects of the network topology and the number of queues on the waiting time distributions of the priority-queue networks, finding that they exhibit power-law tails in all cases considered, yet with model-dependent power-law exponents. We also show that the synchronicity in task executions, giving rise to priority conflicts in the priority-queue networks, is a relevant factor in the queue dynamics that can change the power-law exponent of the waiting time distribution.Comment: 5 pages, 3 figures, minor changes, final published versio

    Preferential attachment in the growth of social networks: the case of Wikipedia

    Get PDF
    We present an analysis of the statistical properties and growth of the free on-line encyclopedia Wikipedia. By describing topics by vertices and hyperlinks between them as edges, we can represent this encyclopedia as a directed graph. The topological properties of this graph are in close analogy with that of the World Wide Web, despite the very different growth mechanism. In particular we measure a scale--invariant distribution of the in-- and out-- degree and we are able to reproduce these features by means of a simple statistical model. As a major consequence, Wikipedia growth can be described by local rules such as the preferential attachment mechanism, though users can act globally on the network.Comment: 4 pages, 4 figures, revte

    Applying weighted network measures to microarray distance matrices

    Full text link
    In recent work we presented a new approach to the analysis of weighted networks, by providing a straightforward generalization of any network measure defined on unweighted networks. This approach is based on the translation of a weighted network into an ensemble of edges, and is particularly suited to the analysis of fully connected weighted networks. Here we apply our method to several such networks including distance matrices, and show that the clustering coefficient, constructed by using the ensemble approach, provides meaningful insights into the systems studied. In the particular case of two data sets from microarray experiments the clustering coefficient identifies a number of biologically significant genes, outperforming existing identification approaches.Comment: Accepted for publication in J. Phys.

    Dynamical and bursty interactions in social networks

    Full text link
    We present a modeling framework for dynamical and bursty contact networks made of agents in social interaction. We consider agents' behavior at short time scales, in which the contact network is formed by disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated to being part of a group, or vice-versa. Different distributions of contact times and inter-contact times between individuals are obtained by considering transition probabilities with memory effects, i.e. the transition probabilities for each agent depend both on its state (isolated or interacting) and on the time elapsed since the last change of state. The model lends itself to analytical and numerical investigations. The modeling framework can be easily extended, and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information, or spreading of diseases

    Thermodynamical properties of hairy black holes in n spacetimes dimensions

    Full text link
    The issue concerning the existence of exact black hole solutions in presence of non vanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional non asymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proven.Comment: Latex document, 23 pages, references added to section [1] and [3], typos correcte
    • …
    corecore