27 research outputs found

    Ways to Enhance Lymphocyte Trafficking into Tumors and Fitness of Tumor Infiltrating Lymphocytes

    Get PDF
    The tumor is a hostile microenvironment for T lymphocytes. Indeed, irregular blood flow, and endothelial cell (EC) anergy that characterize most solid tumors hamper leukocyte adhesion, extravasation, and infiltration. In addition, hypoxia and reprograming of energy metabolism within cancer cells transform the tumor mass in a harsh environment that limits survival and effector functions of T cells, regardless of being induced in vivo by vaccination or adoptively transferred. In this review, we will summarize on recent advances in our understanding of the characteristics of tumor-associated neo-angiogenic vessels as well as of the tumor metabolism that may impact on T cell trafficking and fitness of tumor infiltrating lymphocytes. In particular, we will focus on how advances in knowledge of the characteristics of tumor ECs have enabled identifying strategies to normalize the tumor-vasculature and/or overcome EC anergy, thus increasing leukocyte-vessel wall interactions and lymphocyte infiltration in tumors. We will also focus on drugs acting on cells and their released molecules to transiently render the tumor microenvironment more suitable for tumor infiltrating T lymphocytes, thus increasing the therapeutic effectiveness of both active and adoptive immunotherapies

    iNKT Cells Control Mouse Spontaneous Carcinoma Independently of Tumor-Specific Cytotoxic T Cells

    Get PDF
    CD1d-restricted invariant NKT (iNKT) cells are a subset of T lymphocytes endowed with innate effector functions that aid in the establishment of adaptive T and B cell immune responses. iNKT cells have been shown to play a spontaneous protective role against experimental tumors. Yet, the interplay between iNKT and tumor-specific T cells in cancer immune surveillance/editing has never been addressed. The transgenic adenocarcinoma of the mouse prostate (TRAMP) is a realistic model of spontaneous oncogenesis, in which the tumor-specific cytotoxic T cell (CTL) response undergoes full tolerance upon disease progression.We report here that lack of iNKT cells in TRAMP mice resulted in the appearance of more precocious and aggressive tumors that significantly reduced animal survival. TRAMP mice bearing or lacking iNKT cells responded similarly to a tumor-specific vaccination and developed tolerance to a tumor-associated antigen at comparable rate.Hence, our data argue for a critical role of iNKT cells in the immune surveillance of carcinoma that is independent of tumor-specific CTL

    Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression

    Get PDF
    Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the proangiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing proangiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumorbearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME

    Genetic and phenotypic attributes of splenic marginal zone lymphoma

    Full text link
    Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-ÎşB, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments

    Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression

    Get PDF
    The gut microbiota has been causally linked to cancer, yet how intestinal microbes influence progression of extramucosal tumors is poorly understood. Here we provide evidence implying that Prevotella heparinolytica promotes the differentiation of Th17 cells colonizing the gut and migrating to the bone marrow (BM) of transgenic Vk*MYC mice, where they favor progression of multiple myeloma (MM). Lack of IL-17 in Vk*MYC mice, or disturbance of their microbiome delayed MM appearance. Similarly, in smoldering MM patients, higher levels of BM IL-17 predicted faster disease progression. IL-17 induced STAT3 phosphorylation in murine plasma cells, and activated eosinophils. Treatment of Vk*MYC mice with antibodies blocking IL-17, IL-17RA, and IL-5 reduced BM accumulation of Th17 cells and eosinophils and delayed disease progression. Thus, in Vk*MYC mice, commensal bacteria appear to unleash a paracrine signaling network between adaptive and innate immunity that accelerates progression to MM, and can be targeted by already available therapies

    Aging tumour cells to cure cancer: Pro-senescence" therapy for cancer

    No full text
    Robust scientific evidence demonstrates that senescence induction in cancer works as a potent weapon to eradicate tumorigenesis. Therapies that enhance senescence not only promote a stable cell growth arrest but also work as a strong stimulus for the activation of the antitumour immune response. However, recent advances suggest that if senescent tumour cells are not cleared from the tumours, they may promote tumour progression and metastasis. In this article, we focus on concepts that are relevant to a pro-senescence therapeutic approach, including caveats, and we propose therapeutic strategies that involve the combined use of pro-senescence therapies with immunotherapies to promote the clearance of senescent tumour cells. In our opinion, these approaches may avoid potential negative effects of pro-senescence therapies and may also enhance the efficacy of currently available immunotherapies

    Role of myeloid-derived suppressor cells in hormone-dependent cancers

    No full text
    Tumour-infiltrating myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells. The main feature of MDSCs is their ability to suppress T-cell activation and function, which leads to immunosuppressive activity in the tumour microenvironment. Higher numbers of circulating and tumour-infiltrating MDSCs have been observed in a large number of patients with various types of tumour, and are linked to poor prognosis, especially in hormone-driven tumours. Recently, it has been demonstrated that the recruitment of MDSCs in prostate cancer confers resistance to canonical endocrine therapies, opening a new approach to the treatment of hormone-driven cancer patients

    Cellular Senescence: Aging, Cancer, and Injury

    Get PDF
    Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets
    corecore