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SUMMARY

Heterotypic cellular and molecular interactions in
the tumor microenvironment (TME) control cancer
progression. Here, we show that CD1d-restricted
invariant natural killer (iNKT) cells control prostate
cancer (PCa) progression by sculpting the TME. In
a mouse PCa model, iNKT cells restrained the pro-
angiogenic and immunosuppressive capabilities of
tumor-infiltrating immune cells by reducing pro-
angiogenic TIE2+, M2-like macrophages (TEMs),
and sustaining pro-inflammatory M1-like macro-
phages. iNKT cells directly contacted macrophages
in the PCa stroma, and iNKT cell transfer into tumor-
bearing mice abated TEMs, delaying tumor progres-
sion. iNKT cells modulated macrophages through
the cooperative engagement of CD1d, Fas, and
CD40, which promoted selective killing of M2-like
and survival of M1-like macrophages. Human PCa
aggressiveness associate with reduced intra-tu-
moral iNKT cells, increased TEMs, and expression
of pro-angiogenic genes, underscoring the clinical
significance of this crosstalk. Therefore, iNKT cells
may control PCa through mechanisms involving
differential macrophage modulation, which may
be harnessed for therapeutically reprogramming
the TME.
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INTRODUCTION

Tumors contain malignant cells embedded in a complex micro-

environment comprising non-transformed stromal cells, neovas-

culature, and immune cells, whose crosstalk controls tumor

progression (Hanahan and Coussens, 2012). Deciphering the

cellular and molecular interactions in the tumor microenviron-

ment (TME) may provide new targets for improving anticancer

therapies (Hanahan and Weinberg, 2011). Macrophages

frequently make up a sizable proportion of the immune cell

compartment of tumors (Mantovani et al., 2002). Tumor-associ-

ated macrophages (TAMs) largely derive from circulating mono-

cytes (Franklin et al., 2014), which acquire in the TME both

tumor-promoting and antagonizing functions encompassing im-

mune suppression and surveillance, the regulation of angiogen-

esis, and the facilitation of cancer cell invasion and metastasis

(Noy and Pollard, 2014). Although the dichotomous distinction

between M1 (pro-inflammatory and immunostimulatory) and

M2 (pro-angiogenic and pro-tumoral) TAMs may oversimplify

macrophage complexity (Mantovani et al., 2002; Murray et al.,

2014), it can fairly identify phenotypically and functionally

discrete TAM subsets that populate distinct TMEs (Noy and

Pollard, 2014; Squadrito et al., 2012). For example, Tie2-

expressing macrophages (TEMs) express a marked M2-like

molecular signature (Pucci et al., 2009) and have pro-angiogenic,

immunosuppressive, and pro-metastatic functions (Lewis et al.,

2016). Conversely, CD11c+/Tie2-negative TAMs express a

M1-skewed gene signature and exhibit angiostatic and immu-

nostimulatory functions (Baer et al., 2016; Pucci et al., 2009).
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Invariant natural killer T (iNKT) cells are a T lymphocyte subset

with innate effector functions and a conserved semi-invariant

T cell receptor (TCR) restricted to the major histocompatibility

complex (MHC) class I-related CD1d molecule (Brennan et al.,

2013). iNKT cells recognize a range of microbial lipids but are

also self-reactive against endogenous lipids that are upregulated

under stress conditions (Brennan et al., 2013). Upon activation,

iNKT cells modulate the functions of other innate and adaptive

immune effector cells via direct contact and cytokine production

(Brennan et al., 2013).

iNKT cells have been implicated in the control of infectious

pathogens, autoimmunity, and cancer progression (Brennan

et al., 2013). In animal models, activation of iNKT cells by the

administration of CD1d-restricted antigens, such as the syn-

thetic glycosphingolipid a-galactosyl-ceramide (aGalCer), pro-

motes potent antitumoral immune responses via dendritic cell

(DC) licensing, production of immunostimulatory interferon-g

(IFNg) and interleukin-12 (IL-12), and recruitment of cytotoxic

CD8+ T and NK cells (Hayakawa et al., 2001; Hermans et al.,

2003; Nakagawa et al., 2001). Moreover, aGalCer-mediated

IFNg secretion by iNKT cells impairs tumor angiogenesis (Haya-

kawa et al., 2002). iNKT infiltration is a positive prognostic factor

in neuroblastoma and colorectal cancer (Metelitsa et al., 2004;

Tachibana et al., 2005), whereas low iNKT numbers or unrespon-

siveness are reported in patients with different types of

advanced malignancy (Dhodapkar et al., 2003; Tahir et al.,

2001). Low circulating iNKT numbers predict poor outcome in

patients with head-and-neck squamous carcinoma (Schneiders

et al., 2012) and progression of chronic lymphocytic leukemia

(Gorini et al., 2017) and also correlate with leukemia relapse in

patients following stem cell transplantation (de Lalla et al.,

2011). In mouse cancer models, iNKT cells play an important

role in immune surveillance against different tumor types (Bassiri

et al., 2014; Bellone et al., 2010; Crowe et al., 2002; Renukarad-

hya et al., 2008; Swann et al., 2009), which depends on the direct

recognition of CD1d-expressing malignant cells (Bassiri et al.,

2014; Renukaradhya et al., 2008) or indirect mechanisms, such

as IFNg-dependent enhancement of cytotoxic CD8+ T and NK

cell responses (Crowe et al., 2002), modulation of immunosup-

pressive myeloid cells (De Santo et al., 2010), or killing of

TAMs (Song et al., 2009).

We have previously shown that genetic impairment of iNKT

cells in the oncogene-driven TRAMP prostate cancer (PCa)

model (Greenberg et al., 1995) accelerated and aggravated

tumorigenesis without affecting tumor-specific CD8+ T cells

(Bellone et al., 2010). In this study, we document that iNKT cells

control PCa progression by restricting protumoral TEMs and

supporting antitumoral CD11c+ TAMs via non-redundant mech-

anisms entailing the cooperative engagement of CD1d, Fas, and

CD40.

RESULTS

Absence of iNKT Cells Subverts the TRAMP PCa
Microenvironment
Our previous data implicated iNKT cells in the control of PCa pro-

gression in iNKT-deficient TRAMP-Ja18�/� mice (Bellone et al.,

2010). To rule out immunosuppressive or tumor-promoting func-
tions of CD1d-restricted type-II NKT cells (Godfrey et al., 2010),

which are present in TRAMP-Ja18�/� mice, we here generated

TRAMP-CD1d�/� mice lacking all CD1d-restricted NKT cells.

As shown in Figure 1A, both TRAMP-Ja18�/� and TRAMP-

CD1d�/� mice had similarly shortened survival compared with

TRAMP mice, suggesting that iNKT cells are the only CD1d-

dependent cells involved in the control of TRAMP-PCa

progression.

Earlier work failed to identify differences in cytotoxic T lympho-

cyte (CTL) responses against the PCa-associated antigens

TagIV, PSCA, and STEAP between iNKT-proficient and deficient

TRAMP mice (Bellone et al., 2010). We therefore hypothesized

that iNKT cells could control PCa progression through effects

on the TME. We characterized the impact of iNKT cells on the

molecular pathways expressed by TRAMP PCa-infiltrating

immune cells at different stages of progression. We sorted

CD45+ hematopoietic cells from the prostate of TRAMP and

TRAMP-Ja18�/� mice at 8, 12, and 16 weeks of age and

compared their gene expression profiles. Gene set enrichment

analysis (GSEA) identified multiple pathways that were differen-

tially modulated in at least one time point, with 12 significantly

modulated at all analyzed time points (Figure S1). Notably, in

the absence of iNKT cells, the interferon alpha response and

interferon gamma response gene sets were significantly downre-

gulated, whereas the hallmarks angiogenesis gene set was

significantly enriched (Figure 1B). Accordingly, we observed

increased CD31+ vascular areas in the prostate of TRAMP-

Ja18�/� mice compared to age-matched TRAMP mice (Figures

1C and 1D). Consistent with previous data (Bellone et al., 2010),

the prostates of TRAMP-Ja18�/� mice contained larger SV40+

malignant epithelial cell areas than those of TRAMP mice (Fig-

ures 1C and 1E).

The above results prompted us to examine myelo-monocytic

cells in TRAMP and TRAMP-Ja18�/� PCa, including myeloid-

derived suppressor cells (MDSCs), TAMs, and DCs (Gabrilovich

et al., 2012), all of which are known to regulate angiogenesis (De

Palma et al., 2017). As shown in Figures 2A–2C, unsupervised

high-dimensional flow cytometry analyses identified differences

in the TAMs (CD45+F4/80highCD11b+Gr-1�) of TRAMP and

TRAMP-Ja18�/� mice. In the absence of iNKT cells, macro-

phages with a TEM phenotype (MRC1+CD11c�) were increased,

whereas macrophages with an M1-like, pro-inflammatory

phenotype (CD11c+MRC1�) were decreased (Figures 2A–2C).

The other examined immune cell subsets were found at similar

frequencies in the two genotypes. TEMs were the only cell pop-

ulation expressing high levels of MRC1, whereas pro-inflamma-

tory TAMs expressed CD11c in combination with high-level

F4/80 and CD11b and variable levels of MHCII (Figure 2C).

Analytical flow cytometry analyses confirmed that TEMs were

significantly increased, whereas CD11c+ TAMs were reduced

in the prostates of 10-week-old TRAMP-Ja18�/� mice (Fig-

ure 2D). Thus, absence of iNKT cells increased the TEM/

CD11c+ TAM ratio in PCa (Figure 2E). Histological analysis re-

vealed increased accumulation of F4/80+, MRC1-expressing

TEMs in the stroma of the prostatic lobes of TRAMP-Ja18�/�

mice between 10 and 25weeks of age (Figures 2F and 2G). Inter-

estingly, this trend was not observed in iNKT-proficient TRAMP

prostates (Figure 2H). Collectively, these results suggested a
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Figure 1. Absence of iNKT Cells Reduces TRAMP Mice Survival and Alters Prostate Cancer Microenvironment

(A) Kaplan-Mayer survival analysis of male TRAMP (n = 30), TRAMP Ja18�/� (n = 21), and TRAMP-CD1d�/� (n = 22) mice.

(B) Differential GSEA enrichment plots of the indicated gene sets in TRAMP-Ja18�/� versus TRAMP tumors at 12 weeks.

(C) Representative immunofluorescence staining for vascular endothelial cells (CD31, green), tumor cells (SV40, blue), and nuclei (DAPI, gray) in 25-week-old

TRAMP and TRAMP-Ja18�/� prostates. Bars represent 200 mm (left panels) and 50 mm (right panels). Tissues were from >3 independent mice per strain.

(D and E) Quantification of (D) CD31+ tumor vascular and (E) SV40+ tumor areas in prostates of indicated mice. Dots represent CD31+ or SV40+ cell areas

normalized on DAPI signal in a single tumor area. 15 random non-overlapping fields per slide were analyzed.

Statistical analysis by log rank test corrected for multiple comparisons (A) and Student’s two-tailed t test (D and E). Bars in (D) and (E) indicate mean ± SEM.

See also Figure S1.
critical role for iNKT cells in modulating TAM subpopulations in

the PCa microenvironment of TRAMP mice.

iNKT Cell Transfer Decreases TEMs and Delays PCa
Progression
To study iNKT function, we adoptively transferred iNKT cells

from healthy C57BL/6 animals into TRAMP-Ja18�/� male mice

at about 7 weeks of age and examined TEMs and CD11c+
3008 Cell Reports 22, 3006–3020, March 13, 2018
TAMs in their prostates 3 weeks later. iNKT cell transfer into

TRAMP-Ja18�/� mice significantly abated TEM frequency (Fig-

ure 3A) and absolute numbers (Figure S2A) to levels observed

in age-matched TRAMP mice. At variance, CD11c+ TAMs re-

mained unaffected (Figure S2B).

To investigate the functional involvement of iNKT cells in TAM

programming and PCa progression, we used a transplant model.

We inoculated TRAMP-C1 PCa cells subcutaneously into
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Figure 2. Absence of iNKT Cells in TRAMP Mice Subverts TAM Populations

(A) High-dimensional tSNE maps of prostate-infiltrating myelo-monocytic cells of indicated mice. Representative maps from one mouse/strain are shown, each

clustered in 10 populations. Arrowheads indicate major differences in blue and red populations between the two strains.

(B) Comparative frequency of each cluster between TRAMP and TRAMP-Ja18�/� PCs.

(C) Expression of everymarker in each cluster to define their specific phenotype (indicated on the right column). Dashed histograms show fluorescenceminus one

controls.

(D) Representative flow cytometry identification of MRC1+TEMs and CD11c+TAMs in the prostate-indicated mice.

(legend continued on next page)
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C57BL/6 or Ja18�/� mice, followed by adoptive iNKT cell

transfer either 24 hr or 20 days later. Consistent with data ob-

tained in the autochthonous TRAMPPCamodel, the progression

of TRAMP-C1 tumors was accelerated in Ja18�/� mice (Fig-

ure 3B). Also, both TEM frequency and TEM/CD11c+ TAM ratio

were significantly increased in TRAMP-C1 tumors growing in

the iNKT-deficient hosts (Figures 3C and 3D). Remarkably,

iNKT cell transfer significantly delayed tumor progression (Fig-

ure 3B) and restored unaltered TEM frequency and TEM/

CD11c+ TAM ratio (Figures 3C and 3D) in iNKT-deficient mice.

To further study the links between iNKT cells and TAMs in

the control of PCa progression, we used an anti-CSF1 receptor

(CSF1R) monoclonal antibody (mAb) to eliminate TAMs.

CSF1R blockade efficiently eliminated most of the TAMs

(Figures S2C–S2F), with the residual cells displaying a

CD11c+MRC1� pro-inflammatory phenotype (Figure S2D).

TAM elimination significantly decreased intraepithelial neovas-

cularization (Figures 3E and 3F) and the extension of SV40+

tumor areas (Figure 3G) in TRAMP-Ja18�/� prostates. It also

effectively eliminated TAMs in transplanted TRAMP-C1 tumors

of wild-type (WT) mice (Figure S2G) and significantly delayed tu-

mor progression in iNKT-proficient mice (Figure 3H). These re-

sults suggest a functional link between the presence of iNKT

cells, the modulation of pro-angiogenic TEMs, and the control

of PCa progression in TRAMP mice.

iNKT Cells Localize and Operate in the TME
We next asked whether iNKT cells control PCa progression

directly in the TME. We first assessed the presence of iNKT cells

in the prostates of TRAMP mice by flow cytometry. As shown in

Figure 4A, sizeable quantities of iNKT cells were detected in the

TRAMP prostates at different disease stages, consistent with

previous studies (Nowak et al., 2010). The relative abundance

of prostate-infiltrating iNKT cells remained unchanged in aging

WT mice but increased in TRAMP mice (Figures S3A and S3B)

along with tumor-infiltrating CD45+ cells (Figure S3C) and tumor

volume (Figure S3D). Notably, most iNKT cells had a iNKT1

effector phenotype, whereas only a minority had a iNKT17

phenotype. The relative frequency of the two subsets varied

with time in TRAMP, but not in healthy prostates, suggesting a

dynamic turnover of effector iNKT cell subsets associated with

tumor progression (Figure 4B). Similar changes in the iNKT1/

iNKT17 subset ratio were also detected in inguinal lymph nodes,

but not in liver and spleen, of TRAMP mice (Figure S3E). Upon

ex vivo analysis, iNKT cells of TRAMP prostates (8 weeks of

age) displayed effector cytokine profiles similar to iNKT cells of

normal prostates. In all samples, iNKT17 only produced IL-17,

whereas iNKT1 cells mainly produced IFNg (Figure 4C).
(E) Differential TEM frequency (left panel) and TEM/ CD11c+TAM ratio (right pane

frequency of F4/80highCD11b+ cells. Dots represent single mice.

(F) Immunofluorescence staining for TEMs (MRC1, red) and whole TAMs (F4/80,

were counterstained with DAPI (gray). The scale bars represent 50 mm; dashed y

(G) Quantification of TEMs per field. Dots indicate normalized MRC1 signal quantifi

slide were analyzed in tissues from >3 independent mice per strain/age.

(H) Longitudinal quantification of data reported in (G).

Data in (A), (B), and (C) refer to one of two independent experiments performed w

(G), and (H) show mean ± SEM; statistical analysis by Student’s two-tailed t test
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Next, we determined iNKT cell localization in the tumor tissue

by staining TRAMP PCa sections with CD1d tetramers. iNKT

cells co-localized with TEMs in the stroma surrounding cancer-

containing prostate acini but were not observed in epithelial

areas of TRAMP prostates; as expected, iNKT cells were absent

in TRAMP-CD1d�/� mice (Figures 4D and S4A). The overall

abundance of iNKT cells in the prostate, determined by histo-cy-

tometry analysis on tissue sections, was consistent with that

determined by flow cytometry of single-cell suspensions (Fig-

ures 4E and S4B). Of all iNKT cells examined by microscopy in

TRAMP prostates, >80% were in close proximity to MRC1+

TEMs (Figure 4F). Confocal analysis further revealed close asso-

ciation between iNKT cells and TEMs in the PCa stroma (Figures

4G and 4H). To corroborate these findings, we examined

whether adoptively transferred iNKT cells could infiltrate the

prostate of TRAMP-Ja18�/�mice to contact TEMs. Confocal im-

aging showed CD1d-tetramer+ cells in the prostate of TRAMP-

Ja18�/� mice as early as 3 days after adoptive iNKT cell transfer

(Figure 4I). As the endogenous iNKT cells, the transferred cells

also home to and interact with TEMs. The ability of adoptively

transferred iNKT cells to home to the prostate of TRAMP-

Ja18�/� mice was confirmed by retrieving fluorescently labeled

cells from prostate tissue (Figure S5A). To explore whether func-

tional iNKT/macrophage interactions also occur in the spleen of

tumor-bearing mice (Cortez-Retamozo et al., 2012), we splenec-

tomized TRAMP-Ja18�/� mice at 4 weeks of age and, 3 weeks

later, transferred iNKT cells to half of them. Splenectomy did

not perturb the PCa microenvironment, as both sham-operated

and splenectomized TRAMP-Ja18�/� mice had comparable

TEMs/CD11c+ TAMs proportions, which were decreased by

iNKT cell transfer (Figure S5B). Collectively, these results lend

strong support to a direct iNKT cell action on TAMs at the

tumor site.

iNKT Cells Differentially Modulate TAM Subpopulations
through Non-redundant Mechanisms
To unravel the mechanisms by which iNKT cells modulate TAMs

in the TRAMP PCamodel, we examined putative modes of iNKT/

TAM interaction. We hypothesized three different, not mutually

exclusive mechanisms: (1) CD1d-dependent interaction be-

tween the two cell types; (2) TAM modulation/differentiation via

CD40L-CD40 engagement or IFNg production by iNKT cells;

and (3) TAM killing by FasL-Fas engagement. Of note, CD40

engagement by iNKT cells enhances antitumor and antiviral

immunity by promoting DC maturation and IL-12 production

(De Santo et al., 2008; Kitamura et al., 1999). IFNg is a major

inducer of antitumor M1-like cells, and its baseline or aGalCer-

induced production by iNKT cells inhibits sarcoma growth and
l), calculated by normalizing the percentage of MRC1+ or CD11c+ cells on the

green) in 10- or 25-week-old TRAMP and TRAMP-Ja18�/� prostates. Nuclei

ellow lines separate stromal and tumor areas.

cation in the imaged area. An average of 15 random non-overlapping fields per

ith n = 3 and n = 4 mice per strain, giving comparable results. Graphs in (B), (E),

is shown.
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Figure 3. Transfer of iNKT Cells into Tumor-Bearing Animals Differentially Modulates TAM Populations and Delays Prostate Cancer

Progression

(A) TEM frequency and TEM/CD11c+ TAM ratio upon adoptive iNKT cell transfer. The experimental strategy is shown. Dots represent independent animals.

(B) Adoptive iNKT cell transfer in TRAMP-C1 tumor-bearing mice. Shown are the tumor growth curves in C57BL/6 mice (n = 9), Ja18�/�mice (n = 8), and Ja18�/�

mice after adoptive iNKT cell transfer on day +1 (n = 5) or day +20 (n = 5).

(C) Representative flow cytometry plots of TEMs and CD11c+ TAMs identified in TRAMP-C1 tumors single-cell suspensions explanted from indicated mice.

(D) Frequency of TEMs and TEM/CD11c+ TAM ratio in TRAMP-C1 tumors grown in indicated mice. Dots represent independent animals.

(E) Immunostaining of prostate sections from TRAMP-Ja18�/� mice treated for 2 weeks with rat IgG2a control (n = 3) or anti-CSF1R mAb (n = 3) and stained for

endothelium (CD31, green), TEMs (MRC1, red), and tumor cells (SV40, blue). Nuclei were counterstained with DAPI (gray). Arrowheads indicate tumor vascu-

larization. The scale bars represent 100 mm (main images) or 50mm (boxed areas).

(legend continued on next page)
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tumor angiogenesis, respectively (Crowe et al., 2002; Hayakawa

et al., 2002). Finally, TAM killing by FasL-Fas engagement is the

main cytolytic mechanism exerted by iNKT cells (Wingender

et al., 2010).

MRC1+ TEMs and CD11c+ TAMs freshly isolated from TRAMP

PCa expressed CD1d and CD40 to comparable levels, whereas

Fas expression was slightly higher on TEMs than CD11c+ TAMs

(Figure S6). We also verified the expression of CD40L and FasL

on iNKT cell subsets. iNKT1, 2, and 17 cells expressed CD40L

to similar level, whereas FasL was mainly expressed on iNKT1

cells (Figures 5A and 5B).

To assess the contribution of CD1d recognition, hepatic iNKT

cells sorted from C57BL6 mice were transferred into 7-week-old

TRAMP-CD1d�/� recipients, and their prostates were collected

3 weeks later to analyze the frequency of TEMs and CD11c+

TAMs. In the absence of CD1d recognition, adoptively trans-

ferred iNKT were unable to modulate TEM frequency and the

TEM/CD11c+ TAM ratio, which remained as high as in untreated

TRAMP-CD1d�/� prostates (Figure 5C). In these experiments,

CD1d was absent from all tissues. To determine whether iNKT

cell activation and TAM modulation required CD1d expression

on either tumor-infiltrating immune cells or cancer cells, we in-

jected TRAMP-C1 cancer cells (Figure 5D), which naturally ex-

press CD1d as the primary TRAMP PCa cells (Nowak et al.,

2010), into CD1d�/� or Ja18�/� animals. Although both CD1d�/�

and Ja18�/� mice lack iNKT cells, Ja18�/� mice contain CD1d-

positive tumor-infiltrating cells. After 24 hr, the mice received

iNKT cells. Consistent with results shown in Figure 3B above,

TRAMP-C1 tumors grew faster in either iNKT cell-deficient

host than in WT animals (Figure 5E). However, the transferred

iNKT cells could control tumor progression only in Ja18�/�, but
not in CD1d�/�, mice (Figure 5E). Furthermore, iNKT cell transfer

into tumor-bearing CD1d�/� mice failed to reduce TEM fre-

quency and the TEM/CD11c+ TAM ratio, unlike in Ja18�/�

mice (Figure 5F), suggesting that CD1d expression on tumor-

infiltrating cells is necessary to unleash iNKT cell modulation

of TAMs.

To investigate the putative roles of CD40, IFNg, and Fas in

the iNKT-TAM communication, iNKT cells were sorted from

CD40L�/�, IFNg�/�, or FasL�/� mice and transferred into

7-week-old TRAMP-Ja18�/� mice. Transfer of CD40L�/� iNKT

cells failed to reduce TEM frequency and the TEM/CD11c+ ratio

in the prostate of TRAMP-Ja18�/�mice (Figure 5G), pointing to a

requisite role for the CD40L-CD40 axis in the modulation of

TAMs by iNKT cells. Transfer of IFNg-deficient iNKT cells instead

decreased both parameters, albeit to a lower extent than WT

iNKT cells (Figure 5G), suggesting that IFNg produced by iNKT

cells was only partly involved in modulating PCa-associated

macrophages. Finally, FasL-deficient iNKT cells failed to modu-

late TAMs (Figure 5G), suggesting that FasL-Fas engagement
(F and G) Signal quantification for (F) CD31+ tumor vascular and (G) SV40+ tu

A minimum of 15 random non-overlapping fields was analyzed per mouse. Differ

(H) TRAMP-C1 tumor growth in WT animals that received anti-CSF1R (n = 6) or i

(A) and (D) show cumulative results from all performed experiments. (B) shows t

ducible results. Data in (A), (B), (D) and (F)–(H) are depicted as mean ± SEM. S

Student’s two-tailed t test (F, G, and H) is shown. For tumor growth (B and H), st

Figure S2.

3012 Cell Reports 22, 3006–3020, March 13, 2018
was also critically required for the modulation of TAMs by

iNKT cells.

Altogether, these results revealed that the differential modula-

tion of TEMs and CD11c+TAMs by iNKT cells critically depended

on non-redundant mechanisms entailing CD1d recognition and

CD40 and Fas engagement. Somewhat surprisingly, production

of IFNg by iNKT cells was not critical for modulating TAMs.

iNKT Cells Sustain M1 and Kill M2 Macrophages In Vitro

through Cooperative CD1d, CD40, and Fas Engagement
MRC1+ TEMs and CD11c+ TAMs display gene expression signa-

tures and phenotypic and functional characteristics partly remi-

niscent of bone marrow (BM)-derived macrophages polarized

toward M1-like (M IFNg) and M2-like (M IL-4) activation, respec-

tively (Pucci et al., 2009). We therefore assessed the effects of

coculturing BM-derived M1, M2, and unstimulated (M0) macro-

phages with iNKT cells expanded in vitro from the spleen of

WT or FasL�/� mice. The 3 macrophage populations expressed

CD1d, CD40, and Fas to similar levels (Figure 6A). Splenic iNKT

cells could be activated in vitro to release cytokines in a CD1d-

dependent manner by M1 and M2 macrophages loaded with

aGalCer (Figure 6B). Upon coculture, however, iNKT cells pro-

tected M1 macrophages from death, whereas they selectively

killed M2 macrophages in a CD1d-dependent manner (Figures

6C and 6D). iNKT cell protection of M1 cells critically depended

on the expression of CD40 by macrophages, as CD40�/� M1

cells were killed by iNKT cells in the same setting (Figure 6E).

By contrast, CD40 did not play an obvious role in M2 macro-

phages, as CD40�/� and WT M2 macrophages were both killed

by iNKT cells upon CD1d recognition (Figures 6D and 6E). The

selective killing of M2 macrophages by iNKT cells was instead

dependent on FasL-Fas engagement, because FasL�/� iNKT

cells failed to kill M2 macrophages (Figure 6F). Importantly,

iNKT cells were also able to differentiate unstimulated M0 cells

into M1 macrophages upon coculture in vitro. This property

required CD1d cognate recognition, but not CD40 engagement

(Figure 6G). Hence, iNKT cells differentially promoted survival

and killing of M1-like and M2-like macrophages, respectively,

via CD1d-cognate activation and the cooperative action be-

tween CD40L/CD40 and FasL/Fas molecules.

Reduced iNKT Cells and Increased TEM and Angiogenic
Signatures Are Hallmarks of Aggressive Human PCa
Wefinally validated the clinical relevance of the iNKT/TAMcross-

talk in human PCa. To this aim, we first compiled a gene signa-

ture specific for mouse TEMs using genes highly expressed in

these cells (Pucci et al., 2009) and also present in our microarray

data (67 out of 77 genes; Figure S7A). We then compared the

gene signature in tumor-infiltrating CD45+ cells of either TRAMP

or TRAMP-Ja18�/�. The analysis showed significant enrichment
mor cell areas. Dots indicate signal quantification in a single epithelial area.

ent symbols indicate independent animals.

sotype control (n = 6) mAbs for three weeks.

he results from one representative experiment of three performed with repro-

tatistical analysis by one-way ANOVA with Tukey post-test (A, B, and D) and

atistical analysis was performed on log10 of area under curve (AUC). See also
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of the TEM gene signature in progressing tumors of iNKT cell-

deficient TRAMP mice (Figure 7A), consistent with histology

and flow cytometry, thus confirming the validity of the signature.

We then ascertained the clinical relevance of these data in hu-

man PCa by investigating the distribution of the TEM signature

in 191 primary PCa samples, whose gene expression and clinical

data are available in the Genomic Data Commons (GDC) (Abes-

house et al., 2015). Patients were stratified according to low or

high disease aggressiveness based on reviewed Gleason score,

and remarkably, the expression of the TEM signature was signif-

icantly enriched in patients with higher tumor aggressiveness

(Figures 7B and 7C). This was confirmed by immunostaining of

human PCa with antibodies against the M2-associated markers

CD163 (Figures 7D and 7E) andMRC1 (Figures 7F and 7G). Sam-

ples from patients with high Gleason score (R8) had a significant

accumulation of M2-like TAMs compared to patients with lower

aggressiveness (Figures 7E and 7G). We also detected signifi-

cantly more iTCR+CD3+ iNKT cells in the prostate of less aggres-

sive low-Gleason-score patients compared to more aggressive

high-Gleason-score specimens (Figures 7H and 7I), consistent

with data obtained in the TRAMP model. CD3+ T cells were

distributed similarly in low- and high-Gleason-score tumors (Fig-

ure 7J). Furthermore, the hallmark angiogenesis gene set was

significantly enriched in human PCa samples with higher Glea-

son score compared to less aggressive tumors (Figures S7B

and S7C), in agreement with data obtained in the TRAMPmodel.

Together, these results support the notion that an inverse corre-

lation exists between iNKT cell infiltration, the abundance of

M2-like TAMs, and angiogenic blood vessels in human PCa.

DISCUSSION

This study underscores dichotomous CD40/Fas-dependent

interactions between iNKT cells and TAMs, which control PCa

progression in mouse tumor models. Both in vivo and in vitro ex-

periments highlighted the critical involvement of non-redundant,

cooperative engagement of CD1d, CD40, and Fas by iNKT cells

to modulate the composition of PCa-associated macrophages.

TEMs and CD11c+ TAMs expressed comparable levels of

CD1d, CD40, and Fas and thus were equally susceptible to
Figure 4. iNKT Cells Localize at the Tumor Site

(A) Flow cytometry analysis of iNKT cells from the prostate of C57BL/6 (WT) and T

mouse strain/age. One of two comparable experiments with the same n of mice

(B) Subset analysis of prostate-infiltrating iNKT cells shown in (A).

(C) Intracellular IL-17 and IFNg production in iNKT cell subsets following ex vivo a

iNKT17 (magenta) gating.

(D) Representative immunostaining of prostate sections from indicated mice stai

were counterstained with DAPI (gray). Arrowheads show iNKT cells in the strom

areas. No CD1d-tetramer signal was detected in control TRAMP-CD1d�/� pros

represent 50 mm.

(E) Representative histo-cytometry quantification of stained iNKT cells and TEM in

concatenating data from 10 random non-overlapping fields per analyzedmouse. F

mean ± SD.

(F) Frequency (mean ± SEM) of iNKT cells detected adjacent to MRC1+ TEM by

(G) Confocal z stack plane of the boxed area in (D) shows direct contact betwee

(H) 3D reconstruction of TEM-iNKT cell contact shown in (D) by z stack renderin

(I) Confocal imaging of transferred iNKT cells (magenta) within the prostate of a 12-

in non-transferred age-matched TRAMP-Ja18�/� prostates. Tissues from 3 inde

See also Figures S3–S5.
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iNKT cell modulation via these molecules. The requirement for

CD1d expression on TAMs implies the recognition of self-lipid

antigens by iNKT cells, whichmay be induced in either TAM pop-

ulation upon stress-related environmental cues (Kain et al., 2014)

or, alternatively, be synthetized in cancer cells and subsequently

taken up by TAMs for cross-presentation to iNKT cells, as

described in a human neuroblastoma model (Song et al.,

2009). Our demonstration that CD40 engagement by iNKT cells

protects M1, but not M2, macrophages from Fas-dependent

killing strongly hints at a differential intersection of the two

signaling pathways in the two macrophage subsets. We specu-

late that specific anti-apoptotic molecules recruited/induced in a

CD40-dependent manner, such as cFLIP, could intervene in pre-

venting Fas-driven apoptosis in M1, but not M2, macrophages.

In addition, previous studies also found the CD40L/CD40 axis

to be necessary for iNKT cell-dependent differentiation of imma-

ture myeloid precursors into stimulatory DCs (De Santo et al.,

2008; Kitamura et al., 1999). We extend this notion by showing

that CD40 engagement by iNKT cells is not required for the dif-

ferentiation of unstimulated M0macrophages into M1 cells, sug-

gesting distinct CD40-dependent effects in macrophage and

immature myeloid precursors, possibly depending on specific

additional accessory signals. The production of IFNg by iNKT

cells was not critical for their antitumoral functions in the TRAMP

model. This was surprising, given the prominent role of IFNg in

M1 macrophage induction (Murray et al., 2014). However, iNKT

cells may indirectly stimulate IFNg production by macrophages,

DCs, CD8 T cells, and NK cells in the TME (Kitamura et al., 1999).

Our data lend strong support to the emerging concept that the

interaction between iNKT cells and macrophages in tissues may

represent a key function of these cells (Lynch et al., 2012, 2015;

Smith et al., 2016). iNKT cell subsets with opposite effector func-

tions localize in different organs, at least in mice, and can either

promote inflammatory and tissue-disruptive M1-like macro-

phages (e.g., in cancer) or anti-inflammatory and tissue-remod-

eling M2-like macrophages (e.g., in the adipose tissue and large

arteries; Lynch et al., 2012, 2015; Smith et al., 2016). This

may have a critical impact on tissue pathophysiology, as func-

tional defects acquired by iNKT cells in disease states may ulti-

mately subvert macrophage activation contributing to tumor
RAMP mice at indicated ages. Data are obtained from pools of 5 prostates per

is shown.

ctivation. The frequencies of cytokine-producing cells refer to iNKT1 (blue) or

ned for iNKT cells (CD1d-tetramer, magenta) and TEMs (MRC1, green). Nuclei

a surrounding the tumor. Dashed yellow line separates stromal and epithelial

tates. Tissues from 3 independent mice/strain were analyzed. The scale bars

the prostates of TRAMP and TRAMP-CD1d�/� mice. Graphs are obtained by

ields from 3 independent mice per strain were quantified. Percentages indicate

microscopy analysis of 3 independent mice.

n iNKT cells and MRC1+ macrophages. The scale bar represents 10 mm.

g.

week-old TRAMP-Ja18�/� recipient. No CD1d-tetramer staining was detected

pendent mice per treatment were analyzed.
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Figure 5. iNKT Cell Modulation of TAMs In Vivo Depends on CD1d Recognition and CD40L-CD40 and FasL-Fas Engagement

(A and B) Flow cytometry expression of (A) CD40L and (B) FasL on iNKT1/2/17 cell subsets gated as shown in Figures 4A and 4B. Grey histograms represent FMO

controls.

(C) TEM/CD11c+ TAM ratio determined in the indicated mice.

(D) Experimental scheme for tumor growth experiment reported in (E).

(E) Growth curves of subcutaneous (s.c.) TRAMP-C1 tumors in indicated mice, with (dotted line) or without (solid line) adoptive iNKT cell transfer at day +1.

Depicted is one of three comparable experiments, performed with n = 10 mice per group. Inset shows CD1d expression on TRAMP-C1 cells (green) versus FMO

(gray).

(F) TEM/CD11c+ TAM ratio determined within s.c. TRAMP-C1 tumors dissected at day +40 from indicated mice.

(G) TEM/CD11c+ TAM ratio in TRAMP, TRAMP-Ja18�/� and TRAMP-Ja18�/� prostates upon adoptive transfer of WT, CD40L�/�, IFNg�/� or FasL�/� iNKT cells.

(A), (B), (E), and (F) show results from one representative experiment of three performed with reproducible results. (C) and (G) show cumulative results from all

performed experiments. Data in (C), and (E)–(G) are mean ± SEM. Dots represent independent animals. Statistical analysis by one-way ANOVA with Tukey post-

test (C, E, and G) and Student’s two-tailed t test (F). For (E), statistical analysis was performed on log10 of AUC. See also Figure S6.

Cell Reports 22, 3006–3020, March 13, 2018 3015



N
or

m
al

iz
ed

 to
 m

od
e

N
or

m
al

iz
ed

 to
 m

od
e

N
or

m
al

iz
ed

 to
 m

od
e

RFI
2.5

CD1d

CD40

Fas

RFI
3.2

RFI 
16

RFI 
17

RFI 
3

RFI 
5

RFI
3.2

RFI 
10.3

RFI 
3.1

D
A

P
I

Annexin V

30,1%

64,8%

14,3%

80,5%

40,7%

57,0%

47,6%

44,8%

72,3%

25,3%

59,0%

30,6%

M1

M2

+αGalCer +αGalCer
+iNKT

+αGalCer
+iNKT
+αCD1d

M1 (M IFNγ) M2 (M IL4)Unstimulated 

IF
N
γ 

pr
od

uc
tio

n 
(n

g/
m

L)

αGalCer
iNKTs
αCD1d

+
–
–

+
+
–

+
+
+

M1

+
–
–

+
+
–

+
+
+

M2

0

2

4

6

8

0

2

4

6

8

IL
4 

pr
od

uc
tio

n 
(n

g/
m

L)

+
–
–

+
+
–

+
+
+

+
–
–

+
+
–

+
+
+

M1 M2

***

***
***

***

*

*** ***
***

A

B

C

D

E

F

G

αGalCer
iNKTs
αCD1d

+
–
–

+
+
–

+
+
+

+
–
–

+
+
–

+
+
+

0.50

0.75

1.00

1.25

1.50

Vi
ab

le
 F

ol
d 

C
ha

ng
e ** * *** **

M1 M2

αGalCer
iNKTs
αCD1d

+
–
–

+
+
–

+
+
+

+
–
–

+
+
–

+
+
+

Vi
ab

le
 F

ol
d 

C
ha

ng
e ****

CD40-/- M1 CD40-/- M2

*

+
–
–

+
+
–

+
+
+

+
–
–

+
+
–

+
+
+

0.50

0.75

1.00

1.25

1.50

Vi
ab

le
 F

ol
d 

C
ha

ng
e *

M1 M2

αGalCer
FasL-/- iNKTs

αCD1d

0.50

0.75

1.00

1.25

1.50

*

    9%38,6%

52,4%

68,1%

31,6%

0,3% 0,3%27,5%

72,2%

0,22%10,1%

89,7%

7,50%23,7%

68,8%

0,24%5,9%

93,8%

+iNKT
+αCD1d

+iNKTUnstimulated
macrophages

CD40-/-

WT

M
H

C
 II

MRC1

Figure 6. iNKT Cells Selectively Sustain M1 Macrophages via CD40 Engagement and Kill M2 Macrophages through Fas Ligation In Vitro

(A) Flow cytometry expression of CD1d, CD40, and Fas on indicated BM-derived macrophage populations. Grey histograms indicate FMO controls

(B) ELISA for IFNg and IL-4 production in cocultures of aGalCer-loaded M1 or M2 cells with iNKT cells ± blocking CD1d mAb. The graphs show the mean of 3

independent experiments combined.

(C) Flow cytometry analysis of macrophage viability after 24 hr coculture with iNKT cells. Shown are representative plots from one of three independent ex-

periments, each with up to four technical replicates per condition, which gave comparable results.

(D–F) Viability index of (D) WTM1 and M2macrophages after 24 hr coculture with WT iNKT cells, (E) CD40�/� M1 andM2macrophages after 24 hr coculture with

WT iNKT cells, and (F) WT M1 and M2 BMDM after 24 hr coculture with FasL�/� iNKT cells. Graphs in (D)–(F) show combined data from three independent

experiments, which gave comparable results.

(G) Representative flow cytometry plots of WT and CD40�/� unstimulated macrophages cultured alone or with iNKT cells ± blocking CD1d Ab. Data from one of

two independent experiments are shown.

Data in (B), (D), (E), and (F) are shown as mean ± SEM. Statistical analysis by one-way ANOVA with Tukey post-test is shown.
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Figure 7. TEMs Expand in Patients with Aggressive PCa and Inversely Correlate with iNKT Cell Infiltration

(A) Enrichment plot of mouse TEM signature generated from published dataset (Pucci et al., 2009).

(B) Heatmap ordered from lower (left) to higher (right) TEM signature score (bar below) of human PCa samples from published dataset (Abeshouse et al., 2015).

The vertical white line separates low from high TEM signature samples. For each patient, blue or black bars above the heatmap show high or low aggressiveness

according to the reviewed Gleason score, respectively.

(C) Fisher’s exact test between aggressiveness and TEM signature of human PCa.

(legend continued on next page)
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progression or metabolic dysfunctions and atherosclerosis

(Lynch et al., 2012, 2015; Smith et al., 2016). In this regard, we

found that both TRAMP and healthy prostates contained a prev-

alent endogenous iNKT1 effector cell population, which was pre-

sent in the prostate at steady state and displayed the type 1

effector functions required for tumor control. However, in

selected organs where anti-inflammatory iNKT2 effector subsets

predominate, such as the gut or lung, iNKT cells may well exhibit

tumor-supporting functions, as recently suggested in a model of

intestinal adenoma (Wang et al., 2018).

The expression of the human TEM signature, as well as of the

pro-angiogenic gene set, significantly correlated with aggres-

siveness of human PCa, underscoring the preclinical relevance

of results obtained in the mouse models and suggesting the

involvement of pro-angiogenic TEMs in human disease pro-

gression. Accordingly, more aggressive human PCa contained

increasedM2-like (CD163+MRC1+)macrophages, accompanied

by reduced iNKT cell infiltration. We were indeed able to detect

iNKT cells infiltrating the human PCa stroma, although the pres-

ence and anatomical distribution of iNKT cells in human cancers

has proven technically difficult to document as yet. Our data are

consistentwith the reduced representation of iNKT cells reported

in the peripheral blood of advanced hormone-resistant PCa pa-

tients (Tahir et al., 2001). Detection, tissue localization and corre-

lation with disease progression of macrophages in human and

mouse PCa are unclear (Lissbrant et al., 2000; McClinton et al.,

1990; Nonomura et al., 2011; Rigamonti et al., 2011; Shimura

et al., 2000). Our analysis of human PCa is consistent with pub-

lished evidence suggesting enrichment of alternatively activated

CD163+ M2-like macrophages, which are phenotypically over-

lapping with TEMs (Pucci et al., 2009), in advanced disease

with poor prognosis (Comito et al., 2014; Lundholm et al.,

2015). In agreement with mouse results, these data strongly sug-

gest that the impairment of iNKT cells in aggressive human PCa,

possibly combined with their reported acquisition of functional

defects (Tahir et al., 2001), may affect TAM balance and promote

angiogenesis, ultimately contributing to tumor progression.

Our results extend previous findings showing killing of tumor-

infiltrating monocytes by human iNKT cells transferred to immu-

nodeficient mice (Song et al., 2009). We have also recently

shown that iNKT cells control chronic lymphocytic leukemia via

modulation of M2-like nurse-like cells (Gorini et al., 2017), sug-

gesting that TAM regulation by iNKT cells maymodulate the pro-

gression of distinct cancer types.
(D) Immunohistochemistry (IHC) staining for M2-like TAMs (CD163) on low- and

matoxylin. 4003 magnification images are shown.

(E) CD163+ cells on IHC slides were counted and plotted according to reviewed Gl

number of CD163+ cells in 4 random, non-overlapping fields.

(F) Immunofluorescence (IF) analysis for M2-like TAMs (MRC1, green) on low- an

DAPI (gray). The scale bar represents 50 mm.

(G) Quantification of TEMs per field. Graph shows the area occupied byMRC1 sig

represents normalized signal quantification in the imaged area. An average of 20

analyzed. Different symbols indicate different patients.

(H) Confocal staining for invariant iNKT cells (invariant Va24-Ja18 iTCR 6B11mAb

sections. Nuclei were counterstained with DAPI (gray). The scale bar represents

(I and J) Sections were also acquired under fluorescence microscope and quantifi

and 2 high Gleason score, respectively) were analyzed. Different symbols indica

In (E), (G), (I), and (J) data are depicted as mean ± SEM; statistical analysis by St
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iNKTcellsarecurrentlybeing investigated inclinical trials inboth

solid and hematological cancers, with promising results (Exley

et al., 2017; Taniguchi et al., 2015). Our findings support their

use in adoptive cell therapy settings for the therapeutic reprog-

ramming of the TME in PCa and possibly other cancer types.

The functional defects acquired by iNKT cells in progressing tu-

mors, including PCa (Tahir et al., 2001), can be reverted by TCR-

dependent activation and cytokines (IL-2 or IL-12) in vitroor in vivo

(Nowak et al., 2010), suggesting that similar approaches may be

used for enhancing iNKT cell activity also in advanced patients.

EXPERIMENTAL PROCEDURES

Study Design

This study was designed to investigate the role of iNKT cells in the sponta-

neous immunosurveillance to prostate cancer. To this aim, we took advantage

of a spontaneous prostate cancer mouse model (TRAMP) and of mice that

specifically lack iNKT cells (Ja18�/�). Having elucidated that iNKT cells modu-

late two populations of TAMs, we addressed the underlying mechanisms by

using specific knockout mice (CD40L�/�, CD40�/�, CD1d�/�, IFNg�/�, and
FasL�/�). All procedures involving animals were reviewed and approved by

the Institutional Animal Care and Use Committee (IACUC) (nos. 509 and 678)

at the San Raffaele Scientific Institute. To validate these findings in the clinical

setting, we performed immunostaining for critical markers on human PCa

samples. All human tumor samples were obtained following informed consent

of the patients, and their use for this study was reviewed and approved by the

ethical committee at San Raffaele Hospital (protocol PROS-MAC-01).

Details on all performed experiments are described in the Supplemental

Experimental Procedures. Donors of iNKT cells, mice used for bone-

marrow-derived macrophages differentiation and for TRAMP-C1 subcutane-

ous tumor growth experiments were of 8 or 9 weeks of age. Unless otherwise

specified, characterization of myelo-macrophage infiltration has always been

performed on mice of 10 weeks of age. Information about the sample size and

statistical methods is present in figure legends. Data were typically collected

through multiple independent experiments as described in figure legends.

For TRAMP-C1 tumor growth analysis and adoptive iNKT cell transfers exper-

iments, investigators were blinded when assessing results. In some cases,

selected samples were excluded from specific analysis because of technical

flaws during sample processing or data acquisition.

Statistics

Comparisons between groups were performed using the two-tailed Student’s

t test with 95%confidence interval or using the 1-way ANOVAwith Tukey post-

test. Comparisons of TRAMP-C1 growth were performed on the area under

curve (see Supplemental Information). Kaplan-Meier survival curves were

analyzed by log rank (Mantel-Cox) test adjusted for multiple comparisons.

Statistical computations were performed using GraphPad Prism v5.0. Over-

representation analysis for the angiogenesis gene signature and TEM gene

signature in the Cancer Genome Atlas (TCGA) dataset was performed using
high-Gleason-score human PCa sections. Nuclei are counterstained by he-

eason score. Each dot represents a single patient and accounts for the average

d high-Gleason-score human PCa sections. Nuclei were counterstained with

nal, normalized on the area with DAPI signal in the imaged tissue area. Each dot

fields per patient (n = 3 low and n = 3 high Gleason score, respectively) were

, red) and total T cells (CD3, green) on low- and high-Gleason-score human PCa

20 mm.

ed for 6B11 (I) and CD3 (J) signal. An average of 10 fields per patient (n = 2 low

te different patients.

udent’s two-tailed t test. See also Figure S7.



the Fisher’s exact test by the fisher.test function in R. Statistical significance is

as follows: *p < 0.05; **p % 0.01; ***p % 0.001; and ****p % 0.0001.
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