1,389 research outputs found
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system
Effect of dimensionality on the charge-density-wave in few-layers 2H-NbSe
We investigate the charge density wave (CDW) instability in single and double
layers, as well as in the bulk 2H-NbSe. We demonstrate that the density
functional theory correctly describes the metallic CDW state in the bulk
2H-NbSe. We predict that both mono- and bilayer NbSe undergo a CDW
instability. However, while in the bulk the instability occurs at a momentum
, in free-standing layers it
occurs at . Furthermore, while
in the bulk the CDW leads to a metallic state, in a monolayer the ground state
becomes semimetallic, in agreement with recent experimental data. We elucidate
the key role that an enhancement of the electron-phonon matrix element at
plays in forming the CDW ground state.Comment: 4 pages 5 figure
Electron-phonon coupling and phonon self-energy in MgB: do we really understand MgB Raman spectra ?
We consider a model Hamiltonian fitted on the ab-initio band structure to
describe the electron-phonon coupling between the electronic bands and
the phonon E mode in MgB. The model allows for analytical
calculations and numerical treatments using very large k-point grids. We
calculate the phonon self-energy of the E mode along two high symmetry
directions in the Brillouin zone. We demonstrate that the contribution of the
bands to the Raman linewidth of the E mode via the
electron-phonon coupling is zero. As a consequence the large resonance seen in
Raman experiments cannot be interpreted as originated from the mode at
. We examine in details the effects of Fermi surface singularities in
the phonon spectrum and linewidth and we determine the magnitude of finite
temperature effects in the the phonon self-energy. From our findings we suggest
several possible effects which might be responsible for the MgB Raman
spectra.Comment: 10 pages, 9 figure
Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular resolved photoemission spectra
We obtain analytical expressions for the electron self-energy and the
electron-phonon coupling in electron-doped graphene using electron-phonon
matrix elements extracted from density functional theory simulations. From the
electron self-energies we calculate angle resolved photoemission spectra. We
demonstrate that the measured kink at eV from the Fermi level is
actually composed of two features, one at eV due to the
twofold degenerate E mode, and a second one at eV due to
the A mode. The electron-phonon coupling extracted from the kink
observed in ARPES experiments is roughly a factor of 5.5 larger than the
calculated one. This disagreement can only be partially reconciled by the
inclusion of resolution effects. Indeed we show that a finite resolution
increases the apparent electron-phonon coupling by underestimating the
renormalization of the electron velocity at energies larger than the kinks
positions. The discrepancy between theory and experiments is thus reduced to a
factor of 2.2. From the linewidth of the calculated ARPES spectra we
obtain the electron relaxation time. A comparison with available experimental
data in graphene shows that the electron relaxation time detected in ARPES is
almost two orders of magnitudes smaller than what measured by other
experimental techniques.Comment: 9 pages, 7 figures, see also Matteo Calandra and Francesco Mauri,
arXiv:0707.149
Peripheral and central mechanisms involved in hormonal control of male and female reproduction
Reproduction involves the integration of hormonal signals acting across multiple systems togenerate a synchronized physiological output. A critical component of reproduction is the luteinizinghormone (LH) surge, which is mediated by estradiol (E2) and neuroprogesterone interacting tostimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recentevidence has shown that both classical and membrane E2 and progesterone signaling is involved inthis pathway. A metabolite of gonadotropin-releasing hormone (GnRH), GnRH-(1-5), has been shownto stimulate GnRH expression, secretion, and has a role in the regulation of lordosis. Additionally,gonadotropin-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurons inbirds. Stress-induced changes in GnIH have been shown to alter breeding behaviors in birds,demonstrating another molecular control of reproduction. Peripherally, paracrine and autocrineactions within the gonad have been suggested as therapeutic targets for infertility in both males andfemales. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic maleinfertility. Indeed, local production of melatonin and corticotropin-releasing hormone (CRH) couldinfluence spermatogenesis via immune pathways in the gonad. In females, vascular endothelialgrowth factor A (VEGF-A) has been implicated in an angiogenic process that mediates developmentof the corpus luteum and thus fertility via the Notch signaling pathway. Age-induced decreases infertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally,morphological changes in the arcuate nucleus of the hypothalamus influence female sexualreceptivity in rats. The processes mediating these morphological changes have been shown toinvolve rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. Together, thisreview highlights new research in these areas, focusing on recent findings in the molecularmechanisms of central and peripheral hormonal control of reproduction.Fil: Rudolph, L. M.. University of California at Los Angeles; Estados UnidosFil: Bentley, G. E.. University of California Berkeley; Estados UnidosFil: Calandra, Ricardo Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Paredes, A. H.. Universidad de Chile; ChileFil: Tesone, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Wu, T. J.. Uniformed Services University; Estados UnidosFil: Micevych, P. E.. University of California at Los Angeles; Estados Unido
Impact of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry on the Clinical Management of Patients With Gram-negative Bacteremia: A Prospective Observational Study.
Background. Early identification of pathogens from blood cultures using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry may optimize the choice of empirical antibiotic therapy in the setting of bloodstream infections. We aimed to assess the impact of this new technology on the use of antibiotic treatment in patients with gram-negative bacteremia. Methods. We conducted a prospective observational study from January to December 2010 to evaluate the sequential and separate impacts of Gram stain reporting and MALDI-TOF bacterial identification performed on blood culture pellets in patients with gram-negative bacteremia. The primary outcome was the impact of MALDI-TOF on empirical antibiotic choice. Results. Among 202 episodes of gram-negative bacteremia, Gram stain reporting had an impact in 42 cases (20.8%). MALDI-TOF identification led to a modification of empirical therapy in 71 of all 202 cases (35.1%), and in 16 of 27 cases (59.3%) of monomicrobial bacteremia caused by AmpC-producing Enterobacteriaceae. The most frequently observed impact was an early appropriate broadening of the antibiotic spectrum in 31 of 71 cases (43.7%). In total, 143 of 165 episodes (86.7%) of monomicrobial bacteremia were correctly identified at genus level by MALDI-TOF. Conclusions. In a low prevalence area for extended spectrum betalactamases (ESBL) and multiresistant gram-negative bacteria, MALDI-TOF performed on blood culture pellets had an impact on the clinical management of 35.1% of all gram-negative bacteremia cases, demonstrating a greater impact than Gram stain reporting. Thus, MALDI-TOF could become a vital second step beside Gram stain in guiding the empirical treatment of patients with bloodstream infection
Electron localization and possible phase separation in the absence of a charge density wave in single-phase 1T-VS
We report on a systematic study of the structural, magnetic and transport
properties of high-purity 1T-VS powder samples prepared under high
pressure. The results differ notably from those previously obtained by
de-intercalating Li from LiVS. First, no Charge Density Wave (CDW) is found
by transmission electron microscopy down to 94 K. Though, \textit{ab initio}
phonon calculations unveil a latent CDW instability driven by an acoustic
phonon softening at the wave vector (0.21,0.21,0)
previously reported in de-intercalated samples. A further indication of latent
lattice instability is given by an anomalous expansion of the V-S bond distance
at low temperature. Second, infrared optical absorption and electrical
resistivity measurements give evidence of non metallic properties, consistent
with the observation of no CDW phase. On the other hand, magnetic
susceptibility and NMR data suggest the coexistence of localized moments with
metallic carriers, in agreement with \textit{ab initio} band structure
calculations. This discrepancy is reconciled by a picture of electron
localization induced by disorder or electronic correlations leading to a phase
separation of metallic and non-metallic domains in the nm scale. We conclude
that 1T-VS is at the verge of a CDW transition and suggest that residual
electronic doping in Li de-intercalated samples stabilizes a uniform CDW phase
with metallic properties.Comment: 22 pages, 10 Figures. Full resolution pictures available at
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.23512
Evidence for a GABAergic system in rodent and human testis: Local GABA production and GABA receptors
The major neurotransmitter of the central nervous system, gamma-aminobutyric acid (GABA), exerts its actions through GABA(A), GABA(B) and GABA(C) receptors. GABA and GABA receptors are, however, also present in several non-neural tissues, including the endocrine organs pituitary, pancreas and testis. In the case of the rat testis, GABA appears to be linked to the regulation of steroid synthesis by Leydig cells via GABA(A) receptors, but neither testicular sources of GABA, nor the precise nature of testicular GABA receptors are fully known. We examined these points in rat, mouse, hamster and human testicular samples. RT-PCR followed by sequencing showed that the GABA-synthesizing enzymes glutamate decarboxylase (GAD) 65 and/or GAD67, as well as the vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT) are expressed. Testicular GAD in the rat was shown to be functionally active by using a GAD assay, and Western blot analysis confirmed the presence of GAD65 and GAD67. Interstitial cells, most of which are Leydig cells according to their location and morphological characteristics, showed positive immunoreaction for GAD and VIAAT/VGAT proteins. In addition, several GABA(A) receptor subunits (alpha1-3, beta1-3, gamma1-3), as well as GABAB receptor subunits R1 and R2, were detected by RT-PCR. Western blot analysis confirmed the results for GABA(A) receptor subunits beta2/3 in the rat, and immunohistochemistry identified interstitial Leydig cells to possess immunoreactive GABA(A) receptor subunits beta2/3 and alpha1. The presence of GABA(A) receptor subunit alpha1 mRNA in interstitial cells of the rat testis was further shown after laser microdissection followed by RT-PCR analysis. In summary, these results describe molecular details of the components of an intratesticular GABAergic system expressed in the endocrine compartment of rodent and human testes. While the physiological significance of this peripheral neuroendocrine system conserved throughout species remains to be elucidated, its mere presence in humans suggests the possibility that clinically used drugs might be able to interfere with testicular function. Copyright (C) 2003 S. Karger AG, Basel
Hole-depletion of ladders in SrCuO induced by correlation effects
The hole distribution in SrCuO is studied by low
temperature polarization dependent O K Near-Edge X-ray Absorption Fine
Structure measurements and state of the art electronic structure calculations
that include core-hole and correlation effects in a mean-field approach.
Contrary to all previous analysis, based on semi-empirical models, we show that
correlations and antiferromagnetic ordering favor the strong chain
hole-attraction. For the remaining small number of holes accommodated on
ladders, leg-sites are preferred to rung-sites. The small hole affinity of
rung-sites explains naturally the 1D - 2D cross-over in the phase diagram of
(La,Y,Sr,Ca)CuOComment: 6 pages, 8 figure
- …