21 research outputs found

    Impact of Surface Ligand on the Biocompatibility of InP/ZnS Quantum Dots with Platelets

    Get PDF
    InP/ZnS quantum dots (QDs) have received a large focus in recent years as a safer alternative to heavy metal-based QDs. Given their intrinsic fluorescent imaging capabilities, these QDs can be potentially relevant for in vivo platelet imaging. The InP/ZnS QDs are synthesized and their biocompatibility investigated through the use of different phase transfer agents. Analysis of platelet function indicates that platelet-QD interaction can occur at all concentrations and for all QD permutations tested. However, as the QD concentration increases, platelet aggregation is induced by QDs alone independent of natural platelet agonists. This study helps to define a range of concentrations and coatings (thioglycolic acid and penicillamine) that are biocompatible with platelet function. With this information, the platelet-QD interaction can be identified using multiple methods. Fluorescent lifetime imaging microscopy (FLIM) and confocal studies have shown QDs localize on the surface of the platelet toward the center while showing evidence of energy transfer within the QD population. It is believed that these findings are an important stepping point for the development of fluorescent probes for platelet imaging

    Studies on the actin-binding protein HS1 in platelets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The platelet cytoskeleton mediates the dramatic change in platelet morphology that takes place upon activation and stabilizes thrombus formation. The Arp2/3 complex plays a vital role in these processes, providing the protrusive force for lamellipodia formation. The Arp2/3 complex is highly regulated by a number of actin-binding proteins including the haematopoietic-specific protein HS1 and its homologue cortactin. The present study investigates the role of HS1 in platelets using HS1<sup>-/- </sup>mice.</p> <p>Results</p> <p>The present results demonstrate that HS1 is not required for platelet activation, shape change or aggregation. Platelets from HS1<sup>-/- </sup>mice spread normally on a variety of adhesion proteins and have normal F-actin and Arp2/3 complex distributions. Clot retraction, an actin-dependent process, is also normal in these mice. Platelet aggregation and secretion is indistinguishable between knock out and littermates and there is no increase in bleeding using the tail bleeding assay.</p> <p>Conclusion</p> <p>This study concludes that HS1 does not play a major role in platelet function. It is possible that a role for HS1 is masked by the presence of cortactin.</p

    A community-based intervention (Young SMILES) to improve the health-related quality of life of children and young people of parents with serious mental illness: randomised feasibility protocol

    Get PDF
    Children and young people of parents with mental illness (COPMI) are at risk of poor mental, physical and emotional health, which can persist into adulthood. They also experience poorer social outcomes and wellbeing as well as poorer quality of life than their peers with ‘healthy’ parents. The needs of COPMI are likely to be significant; however, their prevalence is unknown, although estimates suggest over 60% of adults with a serious mental illness have children. Many receive little or no support and remain ‘hidden’, stigmatised or do not regard themselves as ‘in need’. Recent UK policies have identified supporting COPMI as a key priority, but this alone is insufficient and healthrelated quality of life has been neglected as an outcome

    Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment

    Get PDF
    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Lineage tracing of Pf4-Cre marks hematopoietic stem cells and their progeny

    Get PDF
    The development of a megakaryocyte lineage specific Cre deleter, using the Pf4 (CXCL4) promoter (Pf4-Cre), was a significant step forward in the specific analysis of platelet and megakaryocyte cell biology. However, in the present study we have employed a sensitive reporter-based approach to demonstrate that Pf4-Cre also recombines in a significant proportion of both fetal liver and bone marrow hematopoietic stem cells (HSCs), including the most primitive fraction containing the long-term repopulating HSCs. Consequently, we demonstrate that Pf4-Cre activity is not megakaryocyte lineage-specific but extends to other myeloid and lymphoid lineages at significant levels between 15-60%. Finally, we show for the first time that Pf4 transcripts are present in adult HSCs and primitive hematopoietic progenitor cells. These results have fundamental implications for the use of the Pf4-Cre mouse model and for our understanding of a possible role for Pf4 in the development of the hematopoietic lineage

    Actin on trafficking: could actin guide directed receptor transport?

    No full text
    Here, we present emerging ideas surrounding the interplay between the actin cytoskeleton and receptor transport and activation. The bulk of actin dynamics in cells is thought to contribute to architecture and mobility. Actin also contributes to trafficking, acting as a molecular scaffold, providing force to deform membranes, facilitating vesicle abscission or propelling a vesicle through the cytoplasm1,2 and recent studies highlight important connections between the directed trafficking of receptors and the impact on cell migration and actin dynamics. Additionally, a number of newly described actin nucleation promoting factors, such as the vesicle associated protein WASH, reveal unexpected roles of actin in membrane traffic and suggest that the cell dedicates a significant proportion of its regulation of actin dynamics to controlling trafficking

    Identification of a novel, actin-rich structure, the actin nodule, in the early stages of platelet spreading

    No full text
    Background: During platelet spreading, the actin cytoskeleton undergoes marked changes, forming filopodia, lamellipodia and stress fibres. In the present study, we report the identification of a novel actin-rich structure, termed an actin nodule, which appears prior to lamellipodia and stress fibre formation. Methods: Platelet spreading was monitored using human platelets and mouse GFP-actin platelets using real-time and end-point DIC, and fluorescent and electron microscopy (EM). Results: We identified a small, novel actin structure, the actin nodule, in the early stages of adhesion and spreading, which we hypothesize to be a precursor of lamellipodia and stress fibres. Nodule formation shows an inverse correlation to Rho kinase and myosin-II activity, is independent of PI3-kinase, but dependent on Src kinase activity. Actin nodules contain multiple proteins, including Arp2/3, Fyn, Rac, and beta 1- and beta 3- integrins, but not Src. EM analysis revealed that actin filaments extend in all directions from the nodules. Actin nodules are present on multiple matrices, including fibrinogen, laminin and VWF + botrocetin. Conclusion: This work identifies a novel platelet actin structure, which we propose is a precursor to both lamellipodia and stress fibres and acts to drive platelet spreading

    Microplastics in human blood: Polymer types, concentrations and characterisation using ÎŒFTIR

    Get PDF
    Microplastics (MPs) are an everyday part of life, and are now ubiquitous in the environment. Crucially, MPs have not just been found within the environment, but also within human bodies, including the blood. We aimed to provide novel information on the range of MP polymer types present, as well as their size and shape characteristics, in human whole blood from 20 healthy volunteers. Twenty-four polymer types were identified from 18 out of 20 (90 %) donors and quantified in blood, with the majority observed for the first time. Using an LOQ approach, five polymer types met the threshold with a lower mean ± SD of 2466 ± 4174 MP/L. The concentrations of plastics analysed in blood samples ranged from 1.84 − 4.65 ÎŒg/mL. Polyethylene (32 %), ethylene propylene diene (14 %), and ethylene–vinyl-acetate/alcohol (12 %) fragments were the most abundant. MP particles that were identified within the blood samples had a mean particle length of 127.99 ± 293.26 ”m (7–3000 ”m), and a mean particle width of 57.88 ± 88.89 ”m (5–800 ”m). The MPs were predominantly categorised as fragments (88 %) and were white/clear (79 %). A variety of plastic additive chemicals were identified including endocrine disrupting-classed phthalates. The procedural blank samples comprised 7 polymer types, that were distinct from those identified in blood, mainly resin (25 %), polyethylene terephthalate (17 %), and polystyrene (17 %) with a mean ± SD of 4.80 ± 5.59 MP/L. This study adds to the growing evidence that MPs are taken up into the human body and are transported via the bloodstream. The shape and sizes of the particles raise important questions with respect to their presence and associated hazards in terms of potential detrimental impacts such as vascular inflammation, build up within major organs, and changes to either immune cell response, or haemostasis and thrombosis
    corecore