71 research outputs found

    Association between Mediterranean lifestyle and perception of well-being and distress in a sample population of university Italian students

    Get PDF
    We investigated the extent to which adherence to the Mediterranean diet (MD) in combination with Mediterranean lifestyle factors influenced students’ perceptions of subjective well-being (SWB) and distress. 939 undergraduates completed a survey to assess sociodemographic and lifestyle characteristics, including adherence to the MD, depression, anxiety, stress, and SWB. Data were analysed with correlation, logistic, and multiple linear regression models. Higher adherence to MD correlated with better SWB. Fruit, red meat, sweet and caffeinated beverages contributed significantly. However, it was the combination of adherence to MD with other factors, including quality of social relationships, income, smoking, sleep, and physical activity that better predicted SWB. Our results confirm the positive influence of MD on SWB. However, they also suggest the need to consider perceptions of well-being by a more holistic approach that considers physical and social factors simultaneously to improve the development of more effective educational and motivational programmes.info:eu-repo/semantics/publishedVersio

    Analysis of CGF biomolecules, structure and cell population: Characterization of the stemness features of CGF cells and osteogenic potential

    Get PDF
    Concentrated Growth Factors (CGF) represent new autologous (blood-derived biomaterial), attracting growing interest in the field of regenerative medicine. In this study, the chemical, structural, and biological characterization of CGF was carried out. CGF molecular characterization was performed by GC/MS to quantify small metabolites and by ELISA to measure growth factors and matrix metalloproteinases (MMPs) release; structural CGF characterization was carried out by SEM analysis and immunohistochemistry; CGF has been cultured, and its primary cells were isolated for the identification of their surface markers by flow cytometry, Western blot, and real-time PCR; finally, the osteogenic differentiation of CGF primary cells was evaluated through matrix mineralization by alizarin red staining and through mRNA quantification of osteogenic differentiation markers by real-time PCR. We found that CGF has a complex inner structure capable of influencing the release of growth factors, metabolites, and cells. These cells, which could regulate the production and release of the CGF growth factors, show stem features and are able to differentiate into osteoblasts producing a mineralized matrix. These data, taken together, highlight interesting new perspectives for the use of CGF in regenerative medicine

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Effects of cisplatin on matrix metalloproteinase-2 in transformed thyroid cells

    No full text
    We investigated the effects of cisplatin (cisPt) on matrix metalloproteinase-2 (MMP-2) gelatinolitic activity in transformed PC E1Araf rat thyroid cells. Cells incubated with increasing cisPt concentrations showed dose- and time-dependent decrease of the MMP-2 protein and activity. CisPt provoked the translocation from the cytosol to the plasma membrane of atypical protein kinase C-zeta (PKC-\u3b6) and the activation of PKB/AKT. The effect of cisPt on MMP-2 was dependent on PKC-\u3b6 activation since it was potentiated by a myristoylated PKC-\u3b6 pseudo substrate peptide or by PKC-\u3b6 down-regulation by siRNA. Moreover, MMP-2 activity modulation by cisPt was also dependent on PKB/AKT activation since it was decreased by PKB/AKT down-regulation by siRNA or by pharmacological inhibition of PI3K, thus indicating the importance of the balance of PKB/AKT and PKC-\u3b6 in regulating the cisPt effect on MMP-2 activity. The PC E1Araf cells displayed a migratory capacity that was blocked by MMP-2 down-regulation using siRNA or pharmacological inhibition. The inhibition of cell migration was also obtained with cisPt; in cisPt-treated cells the administration of MMP-2 active protein was able to restore cell migration capacity. In conclusion, the decrease of MMP-2 secretion after cisPt was allowed by PKB/AKT and counteracted by PKC-\u3b6; the cisPt-provoked inhibition of MMP-2 secretion ended in reduction of cell migration. \ua9 2009 Elsevier Inc. All rights reserved
    corecore