506 research outputs found

    EVALUATION OF DEM DERIVED BY REPEAT-PASS X-BAND STRIPMAP MODE PAZ DATA

    Get PDF
    Abstract. This paper, presents the initial results of digital elevation model (DEM) extraction from PAZ Synthetic Aperture Radar (SAR) satellite images using repeat-pass interferometric analysis. We used a multi-temporal high-resolution strip-map mode X-band satellite image that has a single polarization. Five main classes, i.e., volcanic structures, agriculture, settlement, sand dune and plain bareland are considered depending on the structure of the region. Within the category, the coherence value and DEM value are evaluated. In the accuracy assessment analysis, a reference map produced from aerial photogrammetry is used. Additionally, global DEM TanDEM-X data is also tested in the study region. In the analysis, quality metrics, mean error (ME), root means square error (RMSE), standard deviation (STD), and the normalized median absolute deviation (NMAD) are used. The results showed that as the temporal baseline increases the coherence values and the quality of the DEM product decrease. The RMSE values range between 2.36 m to 7.09 m in different classes. The TanDEM-X data provided high accuracies over each class range from 0.88 m to 2.40 m. Since the study area is vulnerable to sinkhole formation, sinkhole-like signals were also observed in the interferograms obtained from different and sequential pairs. The high-resolution repeat-pass PAZ data pointed out its potential for interferometric products generation

    A Compression Valve for Sanitary Control of Fluid-Driven Actuators

    Get PDF
    With significant research focused on integrating robotics into medical devices, sanitary control of pressurizing fluids in a precise, accurate, and customizable way is highly desirable. Current sanitary flow control methods include pinch valves which clamp the pressure line locally to restrict fluid flow; resulting in damage and variable flow characteristics over time. This article presents a sanitary compression valve based on an eccentric clamping mechanism. The proposed valve distributes clamping forces over a larger area, thereby reducing the plastic deformation and associated influence on flow characteristic. Using the proposed valve, significant reductions in plastic deformation (up to 96%) and flow-rate error (up to 98%) were found, when compared with a standard pinch valve. Additionally, an optimization strategy presents a method for improving linearity and resolution over the working range to suit specific control applications. The valve efficacy has been evaluated through controlled testing of a water jet-propelled low-cost endoscopic device. In this case, use of the optimized valve shows a reduction in the average orientation error and its variation, resulting in smoother movement of the endoscopic tip when compared to alternative wet and dry valve solutions. The presented valve offers a customizable solution for sanitary control of fluid-driven actuators

    Polarization Effect on the Performance of On-Chip Wireless Optical Point-to-Point Links

    Get PDF
    Optical on-chip wireless interconnection is an emerging technology that aims to overcome the communication bottleneck in computing architectures and in which multiple processing units are exploited for data-intensive applications. In this work, we propose an integrated dielectric Vivaldi antenna, which exhibits the same gain performances for both TE and TM input polarizations. Point-to-point on-chip communication links between two Vivaldi antennas are analyzed. Moreover, the effect of wave polarization on the link performances is numerically studied in on-chip multilayer structures in connection with the multilayer characteristic parameters, i.e., cladding layer thickness and refractive index. The numerical results show that, with the same antenna gain, TM polarization is affected by lower propagation losses when suitable cladding layer thickness and refractive index are considered

    Online Disturbance Estimation for Improving Kinematic Accuracy in Continuum Manipulators

    Get PDF
    Continuum manipulators are flexible robots which undergo continuous deformation as they are actuated. To describe the elastic deformation of such robots, kinematic models have been developed and successfully applied to a large variety of designs and to various levels of constitutive stiffness. Independent of the design, kinematic models need to be calibrated to best describe the deformation of the manipulator. However, even after calibration, unmodeled effects such as friction, nonlinear elastic and/or spatially varying material properties as well as manufacturing imprecision reduce the accuracy of these models. In this letter, we present a method for improving the accuracy of kinematic models of continuum manipulators through the incorporation of orientation sensor feedback. We achieve this through the use of a “disturbance wrench,” which is used to compensate for these unmodeled effects, and is continuously estimated based on orientation sensor feedback as the robot moves through its workspace. The presented method is applied to the HydroJet, a waterjet-actuated soft continuum manipulator, and shows an average of 40% reduction in root mean square position and orientation error in the two most common types of kinematic models for continuum manipulators, a Cosserat rod model and a pseudo-rigid body model

    Teleoperation and Contact Detection of a Waterjet-Actuated Soft Continuum Manipulator for Low-Cost Gastroscopy

    Get PDF
    Gastric cancer is the third leading cause of cancer deaths worldwide, with most new cases occurring in low and middle income countries, where access to screening programs is hindered by the high cost of conventional endoscopy. The waterjet-actuated HydroJet endoscopic platform was developed as a low-cost, disposable alternative for inspection of the gastric cavity in low-resource settings. In this work, we present a teleoperation scheme and contact detection algorithm that work together to enable intuitive teleoperation of the HydroJet within the confined space of the stomach. Using a geometrically accurate stomach model and realistic anatomical inspection targets, we demonstrate that, using these methods, a novice user can complete a gastroscopy in approximately the same amount of time with the HydroJet as with a conventional endoscope

    Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness

    Get PDF
    Local support is important for the longevity of conservation initiatives. The literature suggests that perceptions of ecological effectiveness, social impacts, and good governance will influence levels of local support for conservation. This paper examines these relationships using data from a survey of small-scale fishermen in 11 marine protected areas from six countries in the Mediterranean Sea. The survey queried small-scale fishermen regarding perceptions and support for conservation. We constructed composite scores for three categories of perceptions-ecological effectiveness, social impacts, and good governance-and tested the relationship with levels of support using ordinal regression models. While all three factors were positively correlated with support for conservation, perceptions of good governance and social impacts were stronger predictors of increasing support. These findings suggest that employing good governance processes and managing social impacts may be more important than ecological effectiveness for maintaining local support for conservation

    Influence of the MCT1 rs1049434 on Indirect Muscle Disorders/Injuries in Elite Football Players

    Get PDF
    The aim of this study was to investigate the association between MCT1 rs1049434 polymorphism and indirect muscle injuries in elite football players. One hundred and seventy-three male elite Italian football players (age = 19.2 ± 5.3 years) were recruited from a first-league football club participating at the Official National Italian Football Championship (Serie A, Primavera, Allievi, Giovanissimi). The cohort was genotyped for the MCT1 rs1049434 polymorphism, and muscle injuries data were collected during the period of 2009-2014 (five football seasons).Genomic DNA was extracted using a buccal swab, and genotyping was performed using PCR method. Structural-mechanical injuries and functional muscle disorder were included in the acute indirect muscle injury group.Participants with the MCT1 AA (AA = 1.57 ± 3.07, n = 69) genotype exhibit significantly higher injury incidents compared to participants with the TT genotype (TT = 0.09 ± 0.25, n = 22, P = 0.04).The MCT1 rs1049434 polymorphism is associated with the incidence of muscle injuries in elite football players. We anticipate that the knowledge of athletes' genetic predisposition to sports-related injuries might aid in individualizing training programs

    Network-Based Characterization of Blood Large-Scale Coherent Motion in the Healthy Human Aorta With 4D Flow MRI

    Get PDF
    Aorta humana; Resonancia magnéticaHuman aorta; MRIAorta humana; Ressonància magnèticaObjective: The need for distilling the hemodynamic complexity of aortic flows into clinically relevant quantities resulted in a loss of the information hidden in 4D aortic fluid structures. To reduce information loss, this study proposes a network-based approach to identify and characterize in vivo the large-scale coherent motion of blood in the healthy human aorta. Methods: The quantitative paradigm of the aortic flow as a “social network” was applied on 4D flow MRI acquisitions performed on forty-one healthy volunteers. Correlations between the aortic blood flow rate waveform at the proximal ascending aorta (AAo), assumed as one of the drivers of aortic hemodynamics, and the waveforms of the axial velocity in the whole aorta were used to build “one-to-all” networks. The impact of the driving flow rate waveform and of aortic geometric attributes on the transport of large-scale coherent fluid structures was investigated. Results: The anatomical length of persistence of large-scale coherent motion was the 29.6% of the healthy thoracic aorta length (median value, IQR 23.1%–33.9%). Such length is significantly influenced by the average and peak-to-peak AAo blood flow rate values, suggesting a remarkable inertial effect of the AAo flow rate on the transport of large-scale fluid structures in the distal aorta. Aortic geometric attributes such as curvature, torsion and arch shape did not influence the anatomical length of persistence. Conclusion: The proposed in vivo approach allowed to quantitatively characterize the transport of large-scale fluid structures in the healthy aorta, strengthening the definition of coherent hemodynamic structures and identifying flow inertia rather than geometry as one of its main determinants. Significance: The findings on healthy aortas may be used as reference values to investigate the impact of aortic disease or implanted devices in disrupting/restoring the physiological spatiotemporal coherence of large-scale aortic flow.Spanish Ministry of Science, Innovation and Universities. Grant Number: IJC2018-037349-

    Deciphering ascending thoracic aortic aneurysm hemodynamics in relation to biomechanical properties

    Get PDF
    The degeneration of the arterial wall at the basis of the ascending thoracic aortic aneurysm (ATAA) is a complex multifactorial process, which may lead to clinical complications and, ultimately, death. Individual genetic, biological or hemodynamic factors are inadequate to explain the heterogeneity of ATAA development/progression mechanisms, thus stimulating the analysis of their complex interplay. Here the disruption of the hemodynamic environment in the ATAA is investigated integrating patient-specific computational hemodynamics, CT-based in vivo estimation of local aortic stiffness and advanced fluid mechanics methods of analysis. The final aims are (1) deciphering the ATAA spatiotemporal hemodynamic complexity and its link to near-wall topological features, and (2) identifying the existing links between arterial wall degeneration and hemodynamic insult. Technically, two methodologies are applied to computational hemodynamics data, the wall shear stress (WSS) topological skeleton analysis, and the Complex Networks theory. The same analysis was extended to the healthy aorta. As main findings of the study, we report that: (1) different spatiotemporal heterogeneity characterizes the ATAA and healthy hemodynamics, that markedly reflect on their WSS topological skeleton features; (2) a link (stronger than canonical WSS-based descriptors) emerges between the variation of contraction/expansion action exerted by WSS on the endothelium along the cardiac cycle, and ATAA wall stiffness. The findings of the study suggest the use of advanced methods for a deeper understanding of the hemodynamics disruption in ATAA, and candidate WSS topological skeleton features as promising indicators of local wall degeneration

    Economic impact of remote monitoring on ordinary follow-up of implantable cardioverter defibrillators as compared with conventional in-hospital visits: a single-center prospective and randomized study

    Get PDF
    Few data are available on actual follow-up costs of remote monitoring (RM) of implantable defibrillators (ICD). Our study aimed at assessing current direct costs of 1-year ICD follow-up based on RM compared with conventional quarterly in-hospital follow-ups. Methods and results Patients (N=233) with indications for ICD were consecutively recruited and randomized at implant to be followed up for 1 year with standard quarterly inhospital visits or by RM with one in-hospital visit at 12 months, unless additional in-hospital visits were required due to specific patient conditions or RM alarms. Costs were calculated distinguishing between provider and patient costs, excluding RM device and service cost. The frequency of scheduled in-hospital visits was lower in the RM group than in the control arm. Follow-up required 47 min per patient/year in the RM arm versus 86 min in the control arm (p=0.03) for involved physicians, generating cost estimates for the provider of USD 45 and USD 83 per patient/- year, respectively. Costs for nurses were comparable. Overall, the costs associated with RM and standard follow-up were USD 103±27 and 154±21 per patient/year, respectively (p=0.01). RM was cost-saving for the patients: USD 97±121 per patient/year in the RM group versus 287± 160 per patient/year (p=0.0001). Conclusion The time spent by the hospital staff was significantly reduced in the RM group. If the costs for the device and service are not charged to patients or the provider, patients could save about USD 190 per patient/year while the hospital could save USD 51 per patient/year
    • …
    corecore