10,821 research outputs found
Non-Simplified SUSY: Stau-Coannihilation at LHC and ILC
If new phenomena beyond the Standard Model will be discovered at the LHC, the
properties of the new particles could be determined with data from the
High-Luminosity LHC and from a future linear collider like the ILC. We discuss
the possible interplay between measurements at the two accelerators in a
concrete example, namely a full SUSY model which features a small stau_1-LSP
mass difference. Various channels have been studied using the Snowmass 2013
combined LHC detector implementation in the Delphes simulation package, as well
as simulations of the ILD detector concept from the Technical Design Report. We
investigate both the LHC and ILC capabilities for discovery, separation and
identification of various parts of the spectrum. While some parts would be
discovered at the LHC, there is substantial room for further discoveries at the
ILC. We finally highlight examples where the precise knowledge about the lower
part of the mass spectrum which could be acquired at the ILC would enable a
more in-depth analysis of the LHC data with respect to the heavier states.Comment: 42 pages, 18 figures, 12 table
Access to improve the muon mass and magnetic moment anomaly via the bound-muon factor
A theoretical description of the factor of a muon bound in a nuclear
potential is presented. One-loop self-energy and multi-loop vacuum polarization
corrections are calculated, taking into account the interaction with the
binding potential exactly. Nuclear effects on the bound-muon factor are
also evaluated. We put forward the measurement of the bound-muon factor via
the continuous Stern-Gerlach effect as an independent means to determine the
free muons magnetic moment anomaly and mass. The scheme presented enables to
increase the accuracy of the mass by more than an order of magnitude
Effects of in-office bleaching agent combined with different desensitizing agents on enamel
Objective: To analyze color change, microhardness and chemical composition of enamel bleached with in-office bleaching agent with different desensitizing application protocols. Materials and Methods: One hundred and seventeen polished anterior human enamel surfaces were obtained and randomly divided into nine groups (n=13). After recording initial color, microhardness and chemical composition, the bleaching treatments were performed as G1: Signal Professional White Now POWDER&LIQUID FAST 38% Hydrogen peroxide(S); G2: S+Flor Opal/0.5% fluoride ion(F); G3: S+GC Tooth Mousse/Casein Phosphopeptide-Amorphous Calcium Phosphate (CPPACP) paste(TM); G4: S+UltraEZ/3% potassium nitrate&0.11% fluoride(U); G5: S+Signal Professional SENSITIVE PHASE 1/30% Nano-Hydroxyapatite (n-HAP) suspension(SP); G6: S-F mixture; G7: S-TM mixture; G8: S-U mixture; G9: S-SP mixture. Color, microhardness and chemical composition measurements were repeated after 1 and 14 days. The percentage of microhardness loss (PML) was calculated 1 and 14 days after bleaching. Data were analyzed with ANOVA, Welch ANOVA, Tukey and Dunnett T3 tests (p<0.05). Results: Color change was observed in all groups. The highest ΔE was observed at G7 after 1 day, and ΔE at G8 was the highest after 14 days (p<0.05). A decrease in microhardness was observed in all groups except G6 and G7 after 1 day. The microhardness of all groups increased after 14 days in comparison with 1 day after bleaching (p>0.05). PML was observed in all groups except G6 and G7 after bleaching and none of the groups showed PML after 14 days. No significant changes were observed after bleaching at Ca and P levels and Ca/P ratios at 1 or 14 days after bleaching (p>0.05). F mass increased only in G2 and G6, 1 day after bleaching (p<0.05). Conclusions: The use of desensitizing agents containing fluoride, CPP-ACP, potassium nitrate or n-HAP after in-office bleaching or mixed in bleaching agent did not inhibit the bleaching effect. However, they all recovered microhardness of enamel 14 days after in-office bleaching
Anomalous single production of fourth family up type quark associated with neutral gauge bosons at the LHC
From the present limits on the masses and mixings of fourth family quarks,
they are expected to have mass larger than the top quark and allow a large
range of mixing of the third family. They could also have different dynamics
than the quarks of three families of the Standard Model. The single production
of the fourth family up type quark t' has been studied via anomalous production
process pp-> t'VX (where V=g,Z,\gamma) at the LHC with the center of mass
energy of 7 and 14 TeV. The signatures of such process are discussed within
both the SM decay modes and anomalous decay modes of t' quarks. The sensitivity
to anomalous coupling kappa/Lambda=0.004 TeV^(-1) can be reached at sqrt(s)=14
TeV and L_(int)=100 pb^(-1).Comment: 15 pages, 9 figure
Low dark current and high speed ZnO metal–semiconductor–metal photodetector on SiO2/Si substrate
Cataloged from PDF version of article.ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO2 on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1 pA at 100V bias, corresponding to 100 pA/cm(2) current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35 A/W responsivity at a 100V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8 ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio and dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation. (C) 2014 AIP Publishing LLC
Theory of the two-loop self-energy correction to the g factor in nonperturbative Coulomb fields
Two-loop self-energy corrections to the bound-electron factor are investigated theoretically to all orders in the nuclear binding strength parameter . The separation of divergences is performed by dimensional regularization, and the contributing diagrams are regrouped into specific categories to yield finite results. We evaluate numerically the loop-after-loop terms, and the remaining diagrams by treating the Coulomb interaction in the electron propagators up to first order. The results show that such two-loop terms are mandatory to take into account for projected near-future stringent tests of quantum electrodynamics and for the determination of fundamental constants through the factor
- …