234 research outputs found

    Nephrogenic remnants: occasional ultrasound diagnosis and follow-up

    Get PDF
    Nephrogenic remnants (NRs) are nodular collections of undifferentiated renal blastema cells in the postnatal kidney that are recognized as putative precursor lesions of Wilms tumor (WT). NRs may remain stationary, undergo regression, or proliferate. In the last case, there is a high risk for the development of a WT. During infancy, they are most frequently of microscopic size, to be found only at autopsy in approximately 1% of infant kidneys. Approximately 1 out of 100 microscopic lesions persist and grow developing lesions large enough to be seen by ultrasound in the first months of life. We report on a case of NRs in a six year old child, as incidental finding during abdominal ultrasound performed for other purposes. In consideration of the potential evolution in WT, after a period of close surveillance of 14 months, the lesion was resected. Histological examination revealed the presence of NRs, no neoplastic lesions were found. Currently the patient is 16 years old, in good health, and there have been no signs of recurrence

    Ovarian cyst in a newborn: a case report

    Get PDF
    The presence of ovarian cysts in the newborn is often a sign of an abnormal exacerbation of the physiologic process. In our case a large cyst caused symptoms related to gastroesophageal reflux: vomiting, poor weight gain, and respiratory disorders. Ultrasound examination enabled a correct diagnosis

    Syndromic Forms of Hyperinsulinaemic Hypoglycaemia A 15-year follow-up Study

    Get PDF
    OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) is one of the commonest causes of hypoglycaemia in children. The molecular basis includes defects in pathways that regulate insulin release. Syndromic conditions like Beckwith-Wiedemann (BWS), Kabuki (KS) and Turner (TS) are known to be associated with a higher risk for HH. This systematic review of children with HH referred to a tertiary centre aims at estimating the frequency of a syndromic/multisystem condition to help address stratification of genetic analysis in infants with HH. METHODS: We performed a retrospective study of 69 patients with syndromic features and hypoglycaemia in a specialist centre from 2004 to 2018. RESULTS: Biochemical investigations confirmed HH in all the cases and several genetic diagnoses were established. Responsiveness to medications and the final outcome following medical treatment or surgery were studied. CONCLUSIONS: This study highlights the association of HH with a wide spectrum of syndromic diagnoses and that children with features suggestive of HH-associated syndromes should be monitored for hypoglycaemia. If hypoglycaemia is documented, they should also be screened for possible HH. Our data indicate that most syndromic forms of HH are diazoxide-responsive and that HH resolves over time; however a significant percentage continues to require medications years after the onset of the disease. Early diagnosis of hyperinsulinism and initiation of treatment is important for preventing hypoglycaemic brain injury and intellectual disability

    The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    Get PDF
    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of 20\sim 20 kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/EL/E behaviour, and distinguishing effects arising from δCP\delta_{CP} and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least 3σ3\sigma for 50\% of the true values of δCP\delta_{CP} with a 20 kton detector. With a far detector of 70 kton, the combination allows a 3σ3\sigma sensitivity for 75\% of the true values of δCP\delta_{CP} after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within today's state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure

    Study on Composition Distribution and Ferromagnetism of Monodisperse FePt Nanoparticles

    Get PDF
    Monodisperse FePt nanoparticles with size of 4.5 and 6.0 nm were prepared by simultaneous reduction of platinum acetylacetonate and thermal decomposition of iron pentacarbonyl in benzylether. The crystallography structure, size, and composition of the FePt nanoparticles were examined by X-ray diffraction and transmission electron microscopy. Energy dispersive X-ray spectrometry measurements of individual particles indicate a broad compositional distribution in both the 4.5 and 6 nm FePt nanoparticles. The effects of compositional distribution on the phase-transition and magnetic properties of the FePt nanoparticles were investigated

    Mu2e calorimeter readout system

    Get PDF
    The Mu2e electromagnetic calorimeter is made of two disks of un-doped parallelepiped CsI crystals readout by SiPM. There are 674 crystals in one disk and each crystal is readout by an array of two SiPM. The readout electronics is composed of two types of modules: 1) the front-end module hosts the shaping amplifier and the high voltage linear regulator; since one front-end module is interfaced to one SiPM, a total of 2696 modules are needed for the entire calorimeter; 2) a waveform digitizer provides a further level of amplification and digitizes the SiPM signal at the sampling frequency of $200\ \text{M}\text{Hz}with12bitsADCresolution;sinceoneboarddigitizesthedatareceivedfrom20SiPMs,atotalof136boardsareneeded.Thereadoutsystemoperationalconditionsarehostile:ionizationdoseof with 12-bits ADC resolution; since one board digitizes the data received from 20 SiPMs, a total of 136 boards are needed. The readout system operational conditions are hostile: ionization dose of 20\ \text{krads},neutronfluxof, neutron flux of 10^{12}\ \mathrm{n}(1\ \text{MeVeq})/\text{cm}^2,magneticfieldof, magnetic field of 1\ \text{T}andinvacuumlevelof and in vacuum level of 10^{-4}\ \text{Torr}$. A description of the readout system and qualification tests is reported

    Performance study of a 3 x 1 x 1 m(3) dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

    Get PDF
    This work would not have been possible without the support of the Swiss National Science Foundation, Switzerland; CEA and CNRS/IN2P3, France; KEK and the JSPS program, Japan; Ministerio de Ciencia e Innovacion in Spain under grants FPA2016-77347-C2, SEV-2016-0588 and MdM-2015-0509, Comunidad de Madrid, the CERCA program of the Generalitat de Catalunya and the fellowship (LCF/BQ/DI18/11660043) from "La Caixa" Foundation (ID 100010434); the Programme PNCDI III, CERN-RO, under Contract 2/2020, Romania; the U.S. Department of Energy under Grant No. DE-SC0011686. This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement no. 654168. The authors are also grateful to the French government operated by the National Research Agency (ANR) for the LABEX Enigmass, LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon for its financial support within the program "Investissements d'Avenir" (ANR-11-IDEX-0007).We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3x1x1 m(3)) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study of the TPC's response, its main detector parameters and performance. The results are important for the understanding and further developments of the dual-phase technology, thanks to the verification of key aspects, such as the extraction of electrons from liquid to gas and their amplification through the entire one square metre readout plain, gain stability, purity and charge sharing between readout views.Swiss National Science Foundation (SNSF)French Atomic Energy CommissionCentre National de la Recherche Scientifique (CNRS)High Energy Accelerator Research Organization (KEK)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceSpanish Government FPA2016-77347-C2 SEV-2016-0588MdM-2015-0509Comunidad de MadridCERCA program of the Generalitat de CatalunyaLa Caixa Foundation LCF/BQ/DI18/11660043 100010434Programme PNCDI III, RomaniaCERN-RO, Romania 2/2020United States Department of Energy (DOE) SC0011686European Commission 654168Universite de Lyon ANR-10-LABX-0066 ANR-11-IDEX-000

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all ΑCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all ΑCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δ_(CP) values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δ_(CP) values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin²θ₁₃ to current reactor experiments

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design
    corecore