34 research outputs found

    Central Glucocorticoid Administration Promotes Weight Gain and Increased 11β-Hydroxysteroid Dehydrogenase Type 1 Expression in White Adipose Tissue

    Get PDF
    Glucocorticoids (GCs) are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD) rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance

    Mechanisms of the Anti-Obesity Effects of Oxytocin in Diet-Induced Obese Rats

    Get PDF
    Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes

    Divergent effects of oxytocin treatment of obese diabetic mice on adiposity and diabetes

    Get PDF
    Oxytocin has been suggested as a novel therapeutic against obesity, because it induces weight loss and improves glucose tolerance in diet-induced obese rodents. A recent clinical pilot study confirmed the oxytocin-induced weight-reducing effect in obese nondiabetic subjects. Nevertheless, the mechanisms involved and the impact on the main comorbidity associated with obesity, type 2 diabetes, are unknown. Lean and ob/ob mice (model of obesity, hyperinsulinemia, and diabetes) were treated for 2 weeks with different doses of oxytocin, analogues with longer half-life (carbetocin) or higher oxytocin receptor specificity ([Thr4,Gly7]-oxytocin). Food and water intake, body weight, and glycemia were measured daily. Glucose, insulin, and pyruvate tolerance, body composition, several hormones, metabolites, gene expression, as well as enzyme activities were determined. Although no effect of oxytocin on the main parameters was observed in lean mice, the treatment dose-dependently reduced food intake and body weight gain in ob/ob animals. Carbetocin behaved similarly to oxytocin, whereas [Thr4,Gly7]-oxytocin (TGOT) and a low oxytocin dose decreased body weight gain without affecting food intake. The body weight gain-reducing effect was limited to the fat mass only, with decreased lipid uptake, lipogenesis, and inflammation, combined with increased futile cycling in abdominal adipose tissue. Surprisingly, oxytocin treatment of ob/ob mice was accompanied by a worsening of basal glycemia and glucose tolerance, likely due to increased corticosterone levels and stimulation of hepatic gluconeogenesis. These results impose careful selection of the conditions in which oxytocin treatment should be beneficial for obesity and its comorbidities, and their relevance for human pathology needs to be determined

    Oxytocin Administration Alleviates Acute but Not Chronic Leptin Resistance of Diet-Induced Obese Mice

    No full text
    Whereas leptin administration only has a negligible effect on the treatment of obesity, it has been demonstrated that its action can be improved by co-administration of leptin and one of its sensitizers. Considering that oxytocin treatment decreases body weight in obese animals and humans, we investigated the effects of oxytocin and leptin cotreatment. First, lean and diet-induced obese (DIO) mice were treated with oxytocin for 2 weeks and we measured the acute leptin response. Second, DIO mice were treated for 2 weeks with saline, oxytocin (50 μg/day), leptin (20 or 40 µg/day) or oxytocin plus leptin. Oxytocin pre-treatment restored a normal acute leptin response, decreasing food intake and body weight gain. Chronic continuous administration of oxytocin or leptin at 40 µg/day decreased body weight in the presence (leptin) or in the absence (oxytocin) of cumulative differences in food intake. Saline or leptin treatment at 20 µg/day had no impact on body weight. Oxytocin and leptin cotreatments had no additional effects compared with single treatments. These results point to the fact that chronic oxytocin treatment improves the acute, but not the chronic leptin response, suggesting that this treatment could be used to improve the short-term satiety effect of leptin

    Local characteristics associated with higher prevalence of ESBL-producing Escherichia coli in community-acquired urinary tract infections: an observational: cross-sectional study

    No full text
    International audienceObjectivesThe prevalence of ESBL-producing Escherichia coli (ESBL-E. coli) in community-acquired urinary tract infections (UTI) has been increasing worldwide since 2000, but with large geographical variations. The aim of this study was to determine whether the ESBL-E. coli rate in urine samples from individuals with community-acquired UTI was associated with the local socio-economic, environmental, agricultural and healthcare characteristics.MethodsThis was a cross-sectional study in western France using data on antibiotic susceptibility of E. coli isolated from urine samples of individuals with community-acquired UTI analysed in non-hospital laboratories from 2015 to 2017. The ESBL-E. coli rate was calculated for each laboratory. Data on socio-economic characteristics, human antibiotic consumption, hospital bed density, animal farming density and percentage of agricultural land and surface water were retrieved at the municipality level and aggregated by study area. Their association with ESBL-E. coli prevalence was quantified using multivariate linear regression models with a backward selection.ResultsFrom 358 291 E. coli isolates from urine samples tested in 92 laboratories, the mean ESBL-E. coli prevalence for the study period was 3.30%. In an adjusted model, the ESBL-E. coli rate was significantly (P 65 years old, third-generation cephalosporin use (DDD/1000 inhabitants), number of hospital beds/km2, poultry density, pig density and percentage of agricultural land. Lower deprivation was associated with a higher ESBL-E. coli rate.ConclusionsSeveral anthropogenic factors (primary care, hospitals and animal farming) are associated with the local ESBL-E. coli rate in community-acquired UTI. These results could contribute to improve risk management, including identification of at-risk patient groups

    Alterations in lipid metabolism and thermogenesis with emergence of brown adipocytes in white adipose tissue in diet-induced obesity-resistant Lou/C rats

    No full text
    Recent studies describe the Lou/C rat as a model of resistance to age- and diet-induced obesity and suggest a preferential channeling of nutrients toward utilization rather than storage under standard feeding conditions. The purpose of the present study was to evaluate lipid metabolism of Lou/C and Wistar rats under a high-fat (HF) diet. Four-month-old male Lou/C and Wistar animals were submitted to a 40% HF diet for 5-9 wk. Evolution of food intake, body weight, and body composition, hormonal parameters, and expression of key transcription factors and enzymes involved in lipid metabolism were determined. Wistar rats developed obesity after 5 wk of HF diet, as previously described. Among the various parameters measured, accumulation of intraperitoneal fat was particularly evident in HF-fed Wistar rats. In these animals, thermogenesis was, however, stimulated as a likely compensatory mechanism against the development of obesity. On the contrary, Lou/C animals failed to develop obesity under such a diet, and intraperitoneal fat, not including epididymal and retroperitoneal fat depots, was virtually absent. Enzyme measurements confirmed lipid utilization rather than storage, which was accompanied by the striking emergence of uncoupling protein-1, characteristic of brown adipocytes, in white adipose tissue, particularly in the subcutaneous depot

    Improved leptin sensitivity as a potential candidate responsible for the spontaneous food restriction of the Lou/C rat.

    Get PDF
    The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin) measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3) ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3), known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF) and thyrotropin-releasing hormone (TRH)
    corecore