824 research outputs found

    Phase coexistence and relaxation of the spherical frustrated Blume-Emery-Griffiths model with attractive particles coupling

    Full text link
    We study the equilibrium and dynamical properties of a spherical version of the frustrated Blume-Emery-Griffiths model at mean field level for attractive particle-particle coupling (K>0). Beyond a second order transition line from a paramagnetic to a (replica symmetric) spin glass phase, the density-temperature phase diagram is characterized by a tricritical point from which, interestingly, a first order transition line starts with coexistence of the two phases. In the Langevin dynamics the paramagnetic/spin glass discontinuous transition line is found to be dependent on the initial density; close to this line, on the paramagnetic side, the correlation-response plot displays interrupted aging.Comment: to be published on Europhysics Letter

    Brain organoids: Filling the need for a human model of neurological disorder

    Get PDF
    Neurological disorders are among the leading causes of death worldwide, accounting for almost all onsets of dementia in the elderly, and are known to negatively affect motor ability, mental and cognitive performance, as well as overall wellbeing and happiness. Currently, most neurological disorders go untreated due to a lack of viable treatment options. The reason for this lack of options is s poor understanding of the disorders, primarily due to research models that do not translate well into the human in vivo system. Current models for researching neurological disorders, neurodevelopment, and drug interactions in the central nervous system include in vitro monolayer cell cultures, and in vivo animal models. These models have shortcomings when it comes to translating research about disorder pathology, development, and treatment to humans. Brain organoids are three-dimensional (3D) cultures of stem cell-derived neural cells that mimic the development of the in vivo human brain with high degrees of accuracy. Researchers have started developing these miniature brains to model neurodevelopment, and neuropathology. Brain organoids have been used to model a wide range of neurological disorders, including the complex and poorly understood neurodevelopmental and neurodegenerative disorders. In this review, we discuss the brain organoid technology, placing special focus on the different brain organoid models that have been developed, discussing their strengths, weaknesses, and uses in neurological disease modeling

    Glass glass transition and new dynamical singularity points in an analytically solvable p-spin glass like model

    Full text link
    We introduce and analytically study a generalized p-spin glass like model that captures some of the main features of attractive glasses, recently found by Mode Coupling investigations, such as a glass/glass transition line and dynamical singularity points characterized by a logarithmic time dependence of the relaxation. The model also displays features not predicted by the Mode Coupling scenario that could further describe the attractive glasses behavior, such as aging effects with new dynamical singularity points ruled by logarithmic laws or the presence of a glass spinodal line

    A Novel Gaussian Extrapolation Approach for 2D Gel Electrophoresis Saturated Protein Spots

    Get PDF
    Analysis of images obtained from two-dimensional gel electrophoresis (2D-GE) is a topic of utmost importance in bioinformatics research, since commercial and academic software available currently has proven to be neither completely effective nor fully automatic, often requiring manual revision and refinement of computer generated matches. In this work, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, the algorithm reveals overexposed areas, where spots may be truncated, and plateau regions caused by smeared and overlapping spots. Next, it reconstructs the correct distribution of pixel values in these overexposed areas and plateau regions, using a two-dimensional least-squares fitting based on a generalized Gaussian distribution. Pixel correction in saturated and smeared spots allows more accurate quantification, providing more reliable image analysis results. The method is validated for processing highly exposed 2D-GE images, comparing reconstructed spots with the corresponding non-saturated image, demonstrating that the algorithm enables correct spot quantification

    MicroRNA Roles in Cell Reprogramming Mechanisms

    Get PDF
    Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes

    A novel Gaussian fitting approach for 2D gel electrophoresis saturated protein spots

    Get PDF
    Analysis of 2D-GE images is a hot topic in bioinformatics research, since currently available commercial and academic software has proven to be not really effective and not completely automatic, often requiring manual revision of spots detection and refinement of computer generated matches. In this work, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, it reveals overexposed areas where spots may be truncated, and plateau regions caused by smeared and overlapped spots. As next, the correct distribution of pixel values in the overexposed areas and plateau regions is recovered by a two-dimensional fitting based on a generalized Gaussian distribution approximating the spots volume. Pixel correction according to the generalized Gaussian curve in saturated and smeared spots allows more accurate quantifications, providing more reliable image analysis results. As validation, we process highly exposed 2D-GE image, containing saturate spots, with respect to the corresponding non-saturated image, confirming that the method can effectively fix the saturated spots and enable correct spots quantification

    Small fragments sodium sulfated hyaluronate, more than hyaluronic acid, reduces LPS-induced cytokine/chemokine levels in HaCaT cells

    Get PDF
    Hyaluronic acid (HA) is a linear non-sulphated glycosaminoglycan, used in dermatology as a biomaterial for bioengineering purposes, temporary dermal filler, stimulation of wound healing as well as drug vehicle in topical formulations. In addition to the well-characterized structural properties, extensive research on HA has revealed a range of vastly immunemodulatory effects, dependent on its size. In this in vitro study we investigated the ability of HA-S3, a small fragment HA (MW, molecular weight: 68 kDa) with degree of sulphatation of 3 and of HA fraction (MW:210 kDa) to reduce the bacterial induced inflammatory response in spontaneous immortalized keratinocytes. To this purpose, HaCaT cells were treated for 24 hours with 25 ”g/ml of E. Coli derived bacterial lipopolysaccharide (LPS) in absence or presence of small fragment HA-S3 or HA. Cell viability was thereafter assessed using trypan blue stain and interleukin (IL)-8, IL-1ÎČ and tumor necrosis factor alpha (TNF-α) concentrations were determined in cell supernatants by single enzyme-linked immunoadsorbent assay (ELISA). Our results showed that cell viability was not affected either by HA-S3 or HA which in turn were able to reduce LPS-induced mortality. HA and especially HA-S3 were able to significantly reduce LPS-induced pro-inflammatory cytokines. Our observation might suggest new perspectives in the development of HA-S3 containing topical products able to modulate cutaneous inflammatory response

    High resolution chemical stratigraphies of atmospheric depositions from a 4 m depth snow pit at dome C (East Antarctica)

    Get PDF
    In this work, we present chemical stratigraphies of two sampling lines collected within a 4 m depth snow pit dug in Dome C during the Antarctic summer Campaign 2017/2018, 12 years after the last reported snow pit. The first sampling line was analyzed for nine anionic and cationic species using Ion Chromatography (IC); the second sampling line was analyzed for seven major elements in an innovative way with Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) after sample pre-concentration, allowing the study of deposition processes of new markers especially related to crustal source. This coupled analysis, besides confirming previous studies, allowed us to investigate the depositions of the last decades at Dome C, enriching the number of the detected chemical markers, and yielding these two techniques complementary for the study of different markers in this kind of matrix. As a result of the dating, the snow layers analyzed covered the last 50 years of snow depositions. The assessment of the accumulation rate, estimated about 9 cm yr−1, was accomplished only for the period 1992–2016, as the eruption of 1992 constituted the only tie-point found in nssSO42− depth profile. Na, the reliable sea salt marker, together with Mg and Sr, mainly arose from marine sources, whereas Ca, Al and Fe originated from crustal inputs. Post-depositional processes occurred on Cl− as well as on NO3− and methanesulfonic acid (MSA); compared to the latter, Cl− had a more gradual decrease, reporting a threshold at 2.5 m for the post-depositional process completion. For NO3− and MSA, instead, the threshold was shallower, at about 1 m depth, with a loss of 87% for NO3− and of 50% for MSA

    A Novel Gaussian Extrapolation Approach for 2D Gel Electrophoresis Saturated Protein Spots

    Get PDF
    Analysis of images obtained from two-dimensional gel electrophoresis (2D-GE) is a topic of utmost importance in bioinformatics research, since commercial and academic software available currently has proven to be neither completely effective nor fully automatic, often requiring manual revision and refinement of computer generated matches. In this work, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, the algorithm reveals overexposed areas, where spots may be truncated, and plateau regions caused by smeared and overlapping spots. Next, it reconstructs the correct distribution of pixel values in these overexposed areas and plateau regions, using a two-dimensional least-squares fitting based on a generalized Gaussian distribution. Pixel correction in saturated and smeared spots allows more accurate quantification, providing more reliable image analysis results. The method is validated for processing highly exposed 2D-GE images, comparing reconstructed spots with the corresponding non-saturated image, demonstrating that the algorithm enables correct spot quantificatio

    Heart rate, pr, and qt intervals in normal children: A 24‐hour holter monitoring study

    Get PDF
    A dynamic electrocardiographic Holter monitoring study was performed in 32 healthy children (20 males and 12 females, age range 6-11 years old), without heart disease, according to clinical and noninvasive instrumental examination. We evaluated atrioventricular conduction time (PR), heart rate (HR), and QT interval patterns defining the range of normality of these electrocardiographic parameters. The PR interval ranged from 154 +/- 10 ms (mean +/- SD) for HR less than or equal to 60 to 102 +/- 12 ms for HR greater than or equal to 120 (range 85-180). The absolute mean HR was 87 +/- 10 beats/min (range 72-104), the minimum observed HR being 61 +/- 10 (range 51-79), the maximum 160 +/- 20 beats/min (range 129-186). Daytime mean HR gave a mean value of 93 +/- 10 (range 71-148), while during night hours it was 74 +/- 11 (range 54-98). The minimum QT interval averaged 261 +/- 10 ms for HR greater than 120 and the maximum 389 +/- 9 ms for HR less than or equal to 60; the corresponding mean value of QTc (i.e., QT corrected for HR) ranged from 388 +/- 8 for HR less than or equal to 60 beats/min to 403 +/- 14 ms for HR greater than 120 beats/min. The results of the present study provide data of normal children which can be readily compared against those of subjects in whom cardiac abnormalities are suspect or patient.(ABSTRACT TRUNCATED AT 250 WORDS
    • 

    corecore