231 research outputs found

    Setting the scene: Filling the Gaps in Populism Studies

    Get PDF
    This article introduces the conceptual and analytical framework for the special issue, which explores the cultural side of populism: the relationships between politics, emotions, music, and subcultures in populist contexts. We highlight the role that cultural and symbolic 'products' (such as music, emotions, narratives, and visual symbols) play in the emergence and spread of populism. First, we explore the opportunities afforded by understanding the concept of populism from a cultural/symbolic point of view, reaching beyond the traditional party politics literature to which it is usually confined. Second, we suggest different ways in which populism has been articulated in various European countries (e.g. popular cultures, subcultures) since the economic crisis of 2008, emphasizing music, narratives, visuals, and emotions as means of the populist symbolic construction of the political and social reality. Third, from a social movement perspective, we reflect on the mechanisms (cognitive, emotional, normative) that may help understanding the current populist 'momentum', as well as on the methods to empirically grasp them

    Anatomical Regurgitant Orifice Detection and Quantification from 3-D Echocardiographic Images

    Get PDF
    The vena contracta and effective regurgitant orifice area (EROA) are currently used for the clinical assessment of mitral regurgitation (MR) from 2-D color Doppler imaging. In addition to being highly user dependent and having low repeatability, these methods do not represent accurately the anatomic regurgitant orifice (ARO), which affects the adequate assessment of MR patients. We propose a novel method for semi-automatic detection and quantitative assessment of the 3-D ARO shape from 3-D transesophageal echocardiographic images. The algorithm was tested on a set of 25 patients with MR, and compared with EROA for validation. Results indicate the robustness of the proposed approach, with low variability in relation to different settings of user-defined segmentation parameters. Although EROA and ARO exhibited a good correlation (r = 0.8), relatively large biases were measured, indicating that EROA probably underestimates the real shape and size of the regurgitant orifice. Along with the higher reproducibility of the proposed approach, this highlights the limitations of current clinical approaches and underlines the importance of accurate assessment of the ARO shape for diagnosis and treatment in MR patients

    Assessment of ventricular repolarization instability and cardiac risk stratification in different pathological and abnormal conditions

    Get PDF
    Cardiovascular diseases (CVDs) represents the leading cause of mortality worldwide [1,2]. These pathological conditions are mainly characterized by a structurally abnormal heart, that is, a vulnerable substrate, prone to the abnormal generation and/or propagation of the electrical impulse, determining the onset of ventricular arrhythmias, which can result in sudden cardiac death (SCD) [3]. In this context, the assessment of ventricular repolarization from the electrocardiogram (ECG) signal has been shown to provide with valuable information for risk stratification and several electrocardiographic indices have been proposed in the literature [4]. The main objective of this thesis is to propose methodological advances for the assessment of ventricular repolarization instability in pathological and abnormal conditions. These contributions are aimed at improving the prediction of ventricular arrhythmias and, consequently, better identifying SCD risk. In particular, we have addressed this objective by developing robust methodologies for the assessment of T-wave alternans (TWA) and ventricular repolarization instability, in invasive and non-invasive cardiac signals, that have been evaluated in both experimental and clinical conditions. In the first part of the thesis, TWA was simultaneously characterized (prevalence, magnitude, time-course, and alternans waveform) in body-surface ECG and intracardiac electrograms (EGMs) signals during coronary artery occlusion. Signals from both body surface ECG and intracardiac EGMs recorded from 4 different anatomical heart locations (coronary sinus, epicardial space and left and right ventricles) were analyzed following a multilead strategy. Leads were linearly combined using the periodic component analysis (πCA) [5], which maximizes the 2-beat periodicity (TWA periodicity) content present on the available leads. Then the Laplacian Likelihood Ratio method (LLRM) [6] was applied for TWA detection and estimation. A sensitivity study for TWA detection from the 5 different locations of leads was performed, revealing that it is the combination of the ECG leads that better performs. In addition, this multilead approach allowed us to find the optimal combination of intracardiac leads usable for in-vivo monitorization of TWA directly from an implantable device, with a sensitivity comparable to the ECG analysis. These results encourage further research to determine the feasibility of predicting imminent VT/VF episodes by TWA analysis implemented in implantable cardioverter defibrillator’s (ICD) technology.Then, we have studied the potential changes induced by a prolonged exposure to simulated microgravity on ventricular repolarization in structurally normal hearts. It is well known that this environmental condition affects the control of autonomic and cardiovascular systems [7], with a potential increase on cardiac electrical instability. The effects of short- (5 days), mid- (21 days) and long- (60 days) exposure to simulated microgravity on TWA using the head-down bed-rest (HDBR) model [8] were assessed. TWA was evaluated before (PRE), during and after (POST) the immobilization period, by the long-term averaging technique in ambulatory ECG Holter recordings [9]. Additionally, we proposed an adapted short-term averaging approach for shorter, non-stationary ECG signals obtained during two stress manoeuvres (head-up tilt-table and bicycle exercise tests). Both approaches are based on the multilead analysis used in the previous study. The absence of significant changes between PRE and POST-HDBR on TWA indices suggests that a long-term exposure to simulated microgravity is not enough to induce alterations in healthy myocardial substrate up to the point of reflecting electrical instability in terms of TWA on the ECG. Finally, methodological advances were proposed for the assessment of ventricular repolarization instability from the ECG signal in the presence of sporadic (ventricular premature contractions, VPCs) and sustained (atrial fibrillation) rhythm disturbances.On the one hand, a methodological improvement for the estimation of TWA amplitude in ambulatory ECG recordings was proposed, which deals with the possible phase reversal on the alternans sequence induced by the presence of VPCs [10]. The performance of the algorithm was first evaluated using synthetic signals. Then, the effect of the proposed method in the prognostic value of TWA amplitude was assessed in real ambulatory ECG recordings from patients with chronic heart failure (CHF). Finally, circadian TWA changes were evaluated as well as the prognostic value of TWA at different times of the day. A clinical study demonstrated the enhancement in the predictive value of the index of average alternans (IAA) [9] for SCD stratification. In addition, results suggested that alternans activity is modulated by the circadian pattern, preserving its prognostic information when computed just during the morning, which is also the day interval with the highest reported SCD incidence. Thus, suggesting that time of the day should be considered for SCD risk prediction. On the other hand, the high irregularity of the ventricular response in atrial fibrillation (AF) limits the use of the most common ECG-derived markers of repolarization heterogeneity, including TWA, under this clinical condition [11]. A new method for assessing ventricular repolarization changes based on a selective averaging technique was developed and new non-invasive indices of repolarization variation were proposed. The positive impact in the prognostic value of the computed indices was demonstrated in a clinical study, by analyzing ECG Holter recordings from CHF patients with AF. To the best of our knowledge, this is the first study that attempts a non-invasive SCD stratification of patients under AF rhythm by assessing ventricular repolarization instability from the ECG signal. To conclude, the research presented in this thesis sheds some light in the identification of pro-arrhythmic factors, which plays an important role in adopting efficient therapeutic strategies. In particular, the optimal configuration for real-time monitoring of repolarization alternans from intracardiac EGMs, together with the prognostic value of the proposed non-invasive indices of alternans activity and ventricular instability variations in case of AF rhythms demonstrated in two clinical studies, would increase the effectiveness of (ICD) therapy. Finally, the analysis of ECG signals recorded during HDBR experiments in structurally healthy hearts, also provides interesting information on cardiovascular alterations produced in immobilized or bedridden patients.<br /

    From Kepler’s conjecture and fcc lattice to modelling of crowding in living matter

    Get PDF
    Up to now, sphere packing has been investigated without any reference to living matter. This study focuses on the void space (VS) of sphere packing to mimic the extracellular spaces of living tissues. It was inspired by the importance of the extracellular matrix, the vehicle of micro and macromolecules involved in cell metabolism, intercellular communication and drug delivery. The analysis of sphere packing evidenced that in uniform random packing VS is about 1.9 times greater than in the face centered cubic (fcc) lattice (thus being very close to the 1.9 volume ratio of the cube to the sphere). This datum is a good reference for cell packing in vivo. The disproportionate increase of VS per sphere in loose packing in vitro is analyzed having in mind the variability in volume and composition of the interstitial spaces in vivo and cell trafficking. Arrangements of lymphocytes mimicking a two-dimensional hexagonal pattern and dense packing of disks generated by numerical procedures, are described in 7 μm-thick haematoxylin and eosin-stained histological slices from a human lymph node. In narrow tubes simulating roundish cells arranged in limited compartments of the interstice, sphere packing is characterized by noticeable increases of VS. The VS of this packing in vitro is compatible with variability in volume and composition of the interstitial spaces and with cell trafficking in vivo. This paper stresses that in mammalian tissues and organs cells can be packed quite more densely than spheres in the fcc lattice. As to pathology, attention is focused: (i) on overcrowding of cell organelles in some diseases, (ii) on shrinking or swelling of high amplitude, whose opposite effects are to concentrate or dilute intracellular structures and crowding of macromolecules, and (iii) on neoplastic tissues

    Long-term microgravity exposure increases ECG repolarization instability manifested by low-frequency oscillations of T-Wave vector

    Get PDF
    Ventricular arrhythmias and sudden cardiac death during long-term space missions are a major concern for space agencies. Long-duration spaceflight and its ground-based analog head-down bed rest (HDBR) have been reported to markedly alter autonomic and cardiac functioning, particularly affecting ventricular repolarization of the electrocardiogram (ECG). In this study, novel methods are developed, departing from previously published methodologies, to quantify the index of Periodic Repolarization Dynamics (PRD), an arrhythmic risk marker that characterizes sympathetically-mediated low-frequency oscillations in the T-wave vector. PRD is evaluated in ECGs from 42 volunteers at rest and during an orthostatic tilt table test recorded before and after 60-day –6° HDBR. Our results indicate that tilt test, on top of enhancing sympathetic regulation of heart rate, notably increases PRD, both before and after HDBR, thus supporting previous evidence on PRD being an indicator of sympathetic modulation of ventricular repolarization. Importantly, long-term microgravity exposure is shown to lead to significant increases in PRD, both when evaluated at rest and, even more notably, in response to tilt test. The extent of microgravity-induced changes in PRD has been associated with arrhythmic risk in prior studies. An exercise-based, but not a nutrition-based, countermeasure is able to partially reverse microgravity-induced effects on PRD. In conclusion, long-term exposure to microgravity conditions leads to elevated low-frequency oscillations of ventricular repolarization, which are potentiated following sympathetic stimulation and are related to increased risk for repolarization instabilities and arrhythmias. Tested countermeasures are only partially effective in counteracting microgravity effects

    Heatwave Definition and Impact on Cardiovascular Health: A Systematic Review

    Get PDF
    Objectives: We aimed to analyze recent literature on heat effects on cardiovascular morbidity and mortality, focusing on the adopted heat definitions and their eventual impact on the results of the analysis.Methods: The search was performed on PubMed, ScienceDirect, and Scopus databases: 54 articles, published between January 2018 and September 2022, were selected as relevant.Results: In total, 21 different combinations of criteria were found for defining heat, 12 of which were based on air temperature, while the others combined it with other meteorological factors. By a simulation study, we showed how such complex indices could result in different values at reference conditions depending on temperature. Heat thresholds, mostly set using percentile or absolute values of the index, were applied to compare the risk of a cardiovascular health event in heat days with the respective risk in non-heat days. The larger threshold's deviation from the mean annual temperature, as well as higher temperature thresholds within the same study location, led to stronger negative effects.Conclusion: To better analyze trends in the characteristics of heatwaves, and their impact on cardiovascular health, an international harmonization effort to define a common standard is recommendable

    Circadian modulation on T-wave alternans activity in chronic heart failure patients

    Get PDF
    Average TWA activity has been shown to be an independent predictor of sudden cardiac death (SCD) in chronic heart failure (CHF) patients. However, the influence of circadian rhythms on TWA remains understudied. In this work, we assessed circadian TWA changes in a CHF population and evaluated whether the prognostic value of TWA indices is sensitive to the circadian pattern. Holter ECG recordings from 626 consecutive CHF patients (52 SCD) were analyzed. The index of average alternans (IAA), quantifying the average TWA level, was measured in 4 consecutive 6-hour intervals using a multilead fully-automated method. Survival analysis was performed considering SCD as an independent endpoint. IAA changed along the day, with statistically significant lower values during the night than during daytime. This pattern is similar to the one observed in the mean heart rate (HR). However, a low correlation (r=.18) was found between IAA and HR in windows of 128 beats. After dichotomization of patients based on the third quartile of IAA indices, IAA indices computed between hours 06-12 (IAA06-12) and 18-24 (IAA18-24) successfully predicted SCD (Hazard Ratio, HaR:2.34(1.33-4.13)per µV, andHaR:1.87(1.04-3.36) per µV, respectively). In conclusion, circadian variation should be considered for SCD risk prediction
    • …
    corecore