57 research outputs found

    Facilitation of a tropical seagrass by a chemosymbiotic bivalve increases with environmental stress

    Get PDF
    Facilitation of foundation species is critical to the structure, function and persistence of ecosystems. Understanding the dependence of the strength of this facilitation on environmental conditions is important for informed ecosystem management and for predicting the impacts of global change. In coastal seagrass habitats, chemosymbiotic lucinid bivalves can facilitate seagrasses by decreasing potentially toxic levels of sulphide in sediment porewater. However, variation in the strength of lucinid–seagrass facilitation with environmental context has not been experimentally investigated. We tested the hypothesis that the presence of the tiger lucine Codakia orbicularis becomes more important to the growth and survival of the seagrass Thalassia testudinum under decreased light availability and increased sulphide stress. In a mesocosm experiment, we reduced average ambient-light to T. testudinum by 64% and/or increased sediment porewater sulphide concentrations by ~200% and compared growth and tissue chemistry of T. testudinum with and without C. orbicularis. We found that T. testudinum was better able to maintain growth under shading and sulphide stress when C. orbicularis was present. C. orbicularis strongly decreased sediment porewater sulphide, an effect that minimized sulphur build-up in seagrass tissue and was likely achieved through bioirrigation as well as chemoautotrophy. The relative effects of C. orbicularis on T. testudinum growth were strongest in the presence of environmental stressors. Synthesis. The strength of lucinid–seagrass facilitation increases under environmental conditions that hinder the ability of seagrass to detoxify sulphide. Our results provide evidence of a potential mechanism by which the spatiotemporal association between lucinids and seagrasses is maintained and support the incorporation of interspecific facilitation into conservation and restoration strategies for foundation species in the face of increasing anthropogenic impact and global change

    First insights into the vertical habitat use of the whitespotted eagle ray Aetobatus narinari revealed by pop‐up satellite archival tags

    Get PDF
    The whitespotted eagle ray Aetobatus narinari is a tropical to warm‐temperate benthopelagic batoid that ranges widely throughout the western Atlantic Ocean. Despite conservation concerns for the species, its vertical habitat use and diving behaviour remain unknown. Patterns and drivers in the depth distribution of A. narinari were investigated at two separate locations, the western North Atlantic (Islands of Bermuda) and the eastern Gulf of Mexico (Sarasota, Florida, U.S.A.). Between 2010 and 2014, seven pop‐up satellite archival tags were attached to A. narinari using three methods: a through‐tail suture, an external tail‐band and through‐wing attachment. Retention time ranged from 0 to 180 days, with tags attached via the through‐tail method retained longest. Tagged rays spent the majority of time (82.85 ± 12.17% S.D.) within the upper 10 m of the water column and, with one exception, no rays travelled deeper than ~26 m. One Bermuda ray recorded a maximum depth of 50.5 m, suggesting that these animals make excursions off the fore‐reef slope of the Bermuda Platform. Individuals occupied deeper depths (7.42 ± 3.99 m S.D.) during the day versus night (4.90 ± 2.89 m S.D.), which may be explained by foraging and/or predator avoidance. Each individual experienced a significant difference in depth and temperature distributions over the diel cycle. There was evidence that mean hourly depth was best described by location and individual variation using a generalized additive mixed model approach. This is the first study to compare depth distributions of A. narinari from different locations and describe the thermal habitat for this species. Our study highlights the importance of region in describing A. narinari depth use, which may be relevant when developing management plans, whilst demonstrating that diel patterns appear to hold across individuals

    Visitation patterns of two ray mesopredators at shellfish aquaculture leases in the Indian River Lagoon, Florida.

    No full text
    The Indian River Lagoon is a primary location of field-based "grow-out" for bivalve shellfish aquaculture along Florida's Atlantic coast. Grow-out locations have substantially higher clam densities than surrounding ambient sediment, potentially attracting mollusk predators to the area. Inspired by clammer reports of damaged grow-out gear, we used passive acoustic telemetry to examine the potential interactions between two highly mobile invertivores-whitespotted eagle rays (Aetobatus narinari) and cownose rays (Rhinoptera spp.)-and two clam lease sites in Sebastian, FL and compared these to nearby reference sites (Saint Sebastian River mouth, Sebastian Inlet) from 01 June 2017 to 31 May 2019. Clam lease detections accounted for 11.3% and 5.6% of total detections within the study period, for cownose and whitespotted eagle rays, respectively. Overall, the inlet sites logged the highest proportion of detections for whitespotted eagle rays (85.6%), while cownose rays (11.1%) did not use the inlet region extensively. However, both species had significantly more detections at the inlet receivers during the day, and on the lagoon receivers during the night. Both species exhibited long duration visits (> 17.1 min) to clam lease sites, with the longest visit being 387.5 min. These visit durations did not vary substantially between species, although there was individual variability. Based on generalized additive mixed models, longer visits were observed around 1000 and 1800 h for cownose and whitespotted eagle rays, respectively. Since 84% of all visits were from whitespotted eagle rays and these longer visits were significantly longer at night, this information suggests that observed interactions with the clam leases are potentially underestimated, given most clamming operations occur during daytime (i.e., morning). These results justify the need for continued monitoring of mobile invertivores in the region, including additional experimentation to assess behaviors (e.g., foraging) exhibited at the clam lease sites

    A new genus of horse from Pleistocene North America

    No full text
    The extinct ‘New World stilt-legged’, or NWSL, equids constitute a perplexing group of Pleistocene horses endemic to North America. Their slender distal limb bones resemble those of Asiatic asses, such as the Persian onager. Previous palaeogenetic studies, however, have suggested a closer relationship to caballine horses than to Asiatic asses. Here, we report complete mitochondrial and partial nuclear genomes from NWSL equids from across their geographic range. Although multiple NWSL equid species have been named, our palaeogenomic and morphometric analyses support the idea that there was only a single species of middle to late Pleistocene NWSL equid, and demonstrate that it falls outside of crown group Equus. We therefore propose a new genus, Haringtonhippus, for the sole species H. francisci. Our combined genomic and phenomic approach to resolving the systematics of extinct megafauna will allow for an improved understanding of the full extent of the terminal Pleistocene extinction event

    A new genus of horse from Pleistocene North America

    Get PDF
    The extinct ‘New World stilt-legged’, or NWSL, equids constitute a perplexing group of Pleistocene horses endemic to North America. Their slender distal limb bones resemble those of Asiatic asses, such as the Persian onager. Previous palaeogenetic studies, however, have suggested a closer relationship to caballine horses than to Asiatic asses. Here, we report complete mitochondrial and partial nuclear genomes from NWSL equids from across their geographic range. Although multiple NWSL equid species have been named, our palaeogenomic and morphometric analyses support the idea that there was only a single species of middle to late Pleistocene NWSL equid, and demonstrate that it falls outside of crown group Equus. We therefore propose a new genus, Haringtonhippus, for the sole species H. francisci. Our combined genomic and phenomic approach to resolving the systematics of extinct megafauna will allow for an improved understanding of the full extent of the terminal Pleistocene extinction event
    • 

    corecore