246 research outputs found

    Homogenization of the linear Boltzmann equation in a domain with a periodic distribution of holes

    Get PDF
    Consider a linear Boltzmann equation posed on the Euclidian plane with a periodic system of circular holes and for particles moving at speed 1. Assuming that the holes are absorbing -- i.e. that particles falling in a hole remain trapped there forever, we discuss the homogenization limit of that equation in the case where the reciprocal number of holes per unit surface and the length of the circumference of each hole are asymptotically equivalent small quantities. We show that the mass loss rate due to particles falling into the holes is governed by a renewal equation that involves the distribution of free-path lengths for the periodic Lorentz gas. In particular, it is proved that the total mass of the particle system at time t decays exponentially fast as t tends to infinity. This is at variance with the collisionless case discussed in [Caglioti, E., Golse, F., Commun. Math. Phys. 236 (2003), pp. 199--221], where the total mass decays as Const./t as the time variable t tends to infinity.Comment: 29 pages, 1 figure, submitted; figure 1 corrected in new versio

    Self-Structuring of Granular Media under Internal Avalanches

    Full text link
    We study the phenomenon of internal avalanching within the context of recently proposed ``Tetris'' lattice models for granular media. We define a recycling dynamics under which the system reaches a steady state which is self-structured, i.e. it shows a complex interplay between textured internal structures and critical avalanche behavior. Furthermore we develop a general mean-field theory for this class of systems and discuss possible scenarios for the breakdown of universality.Comment: 4 pages RevTex, 3 eps figures, revised version to appear in Phys. Rev. Let

    Response properties in a model for granular matter

    Full text link
    We investigate the response properties of granular media in the framework of the so-called {\em Random Tetris Model}. We monitor, for different driving procedures, several quantities: the evolution of the density and of the density profiles, the ageing properties through the two-times correlation functions and the two-times mean-square distance between the potential energies, the response function defined in terms of the difference in the potential energies of two replica driven in two slightly different ways. We focus in particular on the role played by the spatial inhomogeneities (structures) spontaneously emerging during the compaction process, the history of the sample and the driving procedure. It turns out that none of these ingredients can be neglected for the correct interpretation of the experimental or numerical data. We discuss the problem of the optimization of the compaction process and we comment on the validity of our results for the description of granular materials in a thermodynamic framework.Comment: 22 pages, 35 eps files (21 figures

    Recent Results on the Periodic Lorentz Gas

    Get PDF
    The Drude-Lorentz model for the motion of electrons in a solid is a classical model in statistical mechanics, where electrons are represented as point particles bouncing on a fixed system of obstacles (the atoms in the solid). Under some appropriate scaling assumption -- known as the Boltzmann-Grad scaling by analogy with the kinetic theory of rarefied gases -- this system can be described in some limit by a linear Boltzmann equation, assuming that the configuration of obstacles is random [G. Gallavotti, [Phys. Rev. (2) vol. 185 (1969), 308]). The case of a periodic configuration of obstacles (like atoms in a crystal) leads to a completely different limiting dynamics. These lecture notes review several results on this problem obtained in the past decade as joint work with J. Bourgain, E. Caglioti and B. Wennberg.Comment: 62 pages. Course at the conference "Topics in PDEs and applications 2008" held in Granada, April 7-11 2008; figure 13 and a misprint in Theorem 4.6 corrected in the new versio

    Coarsening and Slow-Dynamics in Granular Compaction

    Full text link
    We address the problem of the microscopic reorganization of a granular medium under a compaction process in the framework of Tetris-like models. We point out the existence of regions of spatial organization which we call domains, and study their time evolution. It turns out that after an initial transient, most of the activity of the system is concentrated on the boundaries between domains. One can then describe the compaction phenomenon as a coarsening process for the domains, and a progressive reduction of domain boundaries. We discuss the link between the coarsening process and the slow dynamics in the framework of a model of active walkers on active substrates.Comment: Revtex 4 pages, 4 figures, in press in PRL. More info http://axtnt3.phys.uniroma1.it/Tetri

    Spherical averages in the space of marked lattices

    Get PDF
    A marked lattice is a dd-dimensional Euclidean lattice, where each lattice point is assigned a mark via a given random field on Zd{\mathbb Z}^d. We prove that, if the field is strongly mixing with a faster-than-logarithmic rate, then for every given lattice and almost every marking, large spheres become equidistributed in the space of marked lattices. A key aspect of our study is that the space of marked lattices is not a homogeneous space, but rather a non-trivial fiber bundle over such a space. As an application, we prove that the free path length in a crystal with random defects has a limiting distribution in the Boltzmann-Grad limit

    Inviscid dynamical structures near Couette flow

    Full text link
    Consider inviscid fluids in a channel {-1<y<1}. For the Couette flow v_0=(y,0), the vertical velocity of solutions to the linearized Euler equation at v_0 decays in time. At the nonlinear level, such inviscid damping has not been proved. First, we show that in any (vorticity) H^{s}(s<(3/2)) neighborhood of Couette flow, there exist non-parallel steady flows with arbitrary minimal horizontal period. This implies that nonlinear inviscid damping is not true in any (vorticity) H^{s}(s<(3/2)) neighborhood of Couette flow and for any horizontal period. Indeed, the long time behavior in such neighborhoods are very rich, including nontrivial steady flows, stable and unstable manifolds of nearby unstable shears. Second, in the (vorticity) H^{s}(s>(3/2)) neighborhood of Couette, we show that there exist no non-parallel steadily travelling flows v(x-ct,y), and no unstable shears. This suggests that the long time dynamics in H^{s}(s>(3/2)) neighborhoods of Couette might be much simpler. Such contrasting dynamics in H^{s} spaces with the critical power s=(3/2) is a truly nonlinear phenomena, since the linear inviscid damping near Couette is true for any initial vorticity in L^2
    • …
    corecore