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Abstract A marked lattice is a d-dimensional Euclidean lattice, where each lattice point is
assigned a mark via a given random field on Z

d . We prove that, if the field is strongly mixing
with a faster-than-logarithmic rate, then for every given lattice and almost every marking,
large spheres become equidistributed in the space of marked lattices. A key aspect of our
study is that the space of marked lattices is not a homogeneous space, but rather a non-trivial
fiber bundle over such a space. As an application, we prove that the free path length in a
crystal with random defects has a limiting distribution in the Boltzmann-Grad limit.

Keywords Equidistribution ·Random process ·Homogeneous dynamics ·Measure rigidity ·
Lorentz gas

Mathematics Subject Classification 37A17 · 60B10

1 Introduction

Consider a Lie groupG, a non-compact one-parameter subgroup�R and a compact subgroup
K . Let λ be a probability measure on K that is absolutely continuous with respect to Haar
measure on K . Given ameasure-preserving actionG×X → X , (g, x) �→ xg on a probability
space (X,A , μ), it is natural to ask under which conditions the “spherical” average Pt
defined by Pt f := ∫K f (x0k�t )dλ(k) converges weakly to μ, or any other probability
measure. In general the best one can hope for is convergence for μ-almost all x0. Proofs
typically require an additional average over �t , and may be viewed as generalizations of
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the classic Wiener ergodic theorem; see Nevo’s survey [21] and references therein. If the
space X is homogeneous, then the weak convergence of the spherical average Pt can be
proved for all x0, with a complete classification of all limit measures, by means of measure
rigidity techniques that are based on Ratner’s measure classification theorem for subgroups
generated by unipotent elements [22]. There is now a large body of literature on this topic,
see for instance [7,8,16,17,19,24]. In some settings, spherical equidistribution may also
be deduced directly from the mixing property of �R [7]. The first example of spherical
equidistribution in the non-homogeneous setting for all (and not just almost all) x0 is given
in [10], where the analogue of Ratner’s theorem is proved for the moduli space of branched
covers of Veech surfaces, which is a fiber bundle over a homogeneous space. Amajor advance
in this direction is the recent work by Eskin and Mirzakhani [11] and Eskin, Mirzakhani and
Mohammadi [12], who prove a Ratner-like classification of measures in the moduli space of
flat surfaces that are invariant under the upper triangular subgroup of SL(2, R). This is used
to prove convergence of spherical averages in that moduli space, with an additional t average
as above, which yields an averaged counting asymptotics for periodic trajectories in general
rational billiards.

The goal of the present study is to construct a natural example of a non-homogeneous
space (the space of marked Euclidean lattices), which is a fiber bundle over a homogeneous
space (the space of Euclidean lattices), and to prove spherical equidistribution for every
point in the base and almost every point in the fiber. Our findings complement a theorem of
Brettschneider [3, Theorem 4.7], who proves uniform convergence of Birkhoff averages for
fiber bundles with uniquely ergodic base under technical assumptions on the test function
and fiber transformation.

This paper is organized as follows. We introduce the space of lattices in Sect. 2, then the
space of marked lattices in Sect. 3, where the marking is produced by a random field on Z

d .
The main results of this study, limit theorems for spherical averages in the space of marked
lattices, are stated and proved in Sects. 4 and 5. The former deals with convergence on average
over the field, the latter with a fixed realization of the random field. Section 6 applies these
results to the setting of defect lattices, where lattice points are either randomly removed, or
shifted from their equilibrium position. Section 7 explains how these findings can be used
to calculate the limit distribution for the free paths lengths in the Boltzmann–Grad limit of a
Lorentz gas for such scatterer configurations.

2 Spherical averages in the space of lattices

Let G0 = SL(d, R) and let �0 = SL(d, Z). We represent elements in R
d as row vectors, and

define a natural action of G0 on R
d by right matrix multiplication. The map

�0M �→ Z
dM (2.1)

gives a one-to-one correspondence between the homogeneous space �0\G0 and the space
of Euclidean lattices in R

d of covolume one. The Haar measure μ0 on G0 is normalized, so
that it projects to a probability measure on �0\G0 which will also be denoted by μ0.

Let G = G0 � R
d be the semidirect product with multiplication law

(M, ξ)
(
M ′, ξ ′) = (MM ′, ξM ′ + ξ ′) (2.2)

where ξ , ξ ′ are viewed as row vectors. The group G is a bundle over G0 with fiber R
d . The

subgroup � = �0 � Z
d is a lattice in G. The Haar measure on G is μ = μ0 × Leb

Rd . It
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induces a probability measure on �\G which will also be denoted by μ. The groups G0 and
G act on R

d by linear and affine transformations, respectively, which are given by

R
d

� G0 R
d

� G (2.3)

(v, g) �→ vg (v, (M, ξ)) �→ vM + ξ =: v(M, ξ), (2.4)

and

Z
d

� �0 Z
d

� � (2.5)

(v, g) �→ vg (v, (M, ξ)) �→ vM + ξ = v(M, ξ), (2.6)

where concatenation denotes matrix multiplication. We embed G0 ↪→ G by M �→ (M, 0),
and identify G0 with its image under this embedding.

As in the linear case, the map
�g �→ Z

dg (2.7)

gives a one-to-one correspondence between the homogeneous space �\G and the space of
affine Euclidean lattices in R

d of covolume one.
We will need other subgroups of G in addition to G0. For ξ ∈ R

d , put

Gξ =
{
G if ξ ∈ R

d \ Q
d ,

(1, ξ)G0(1, ξ)−1 if ξ ∈ Q
d .

(2.8)

The subgroup �ξ = � ∩Gξ is a lattice in Gξ . We denote by μξ be the Haar measure on Gξ ,
normalized so that a fundamental domain of the �ξ -action in Gξ has measure 1. We denote
the induced probability measure on �ξ\Gξ also by μξ . When ξ /∈ Q

d , we put �ξ = � and
μξ = μ. Thus, when ξ ∈ Q

d ,μξ can be identified with a singular measure on�\G supported
on the closed subspace �\�Gξ � �ξ\Gξ of X . Define the translate

Xξ := �\�Gξ (1, ξ), (2.9)

again a closed subspace of X , which we equip with the subspace topology. Note that Xξ =
�\�(1, ξ)G0. The measure μ̃ξ on Xξ defined as the translate of μξ ,

μ̃ξ A = μξ

(
A(1, ξ)−1) (2.10)

for any Borel set A ⊂ Xξ . For t ∈ R and u ∈ U ⊂ R
d−1, with U open and bounded, define

the matrices

�t =
(
e−(d−1)t 0

0T 1d−1et

)

, R(u) = exp

(
0 u

−uT 1d−10

)

. (2.11)

The map U → Sd−1
1 , u �→ e1R(u)−1, where e1 is the first standard basis vector, is a

diffeomorphism onto its image if U is sufficiently small; cf. Remark 5.5 in [17]. More
generally, we can take any smooth map E : U → SO(d) such that

Ẽ : U → Ẽ(U ) ⊂ Sd−1
1 , u �→ e1E(u)−1, (2.12)

is invertible and the inverse is uniformly Lipschitz. We will furthermore assume in the fol-
lowing that the closure of Ẽ(U ) is contained in the hemisphere {v ∈ Sd−1

1 : e1 · v > 0}, and
that Leb(∂U ) = 0.

For a given absolutely continuous probabilitymeasureλ onU , t � 0 and ξ ∈ R
d ,M ∈ G0,

let Pt = P(λ,M,ξ)
t be the Borel probability measure on Xξ defined by
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Pt f =
∫

f d Pt =
∫

u∈U
f
(
�(1, ξ)ME(u)�t) λ(du) (2.13)

for any bounded continuous f : Xξ → R. Note that the restriction to maps E : U → SO(d)

is purely for technical convenience. There is no loss of generality, since M is arbitrary and
the maps U �→ Sd−1

1 , u �→ e1E(u)−1M−1 cover the sphere for finitely many choices of
M ∈ SO(d); cf. [17].

Theorem 2.1 ([17, Sec. 5]) For t → ∞,

Pt
w−→ μ̃ξ . (2.14)

Recall the aboveweak convergencemeans that for every bounded continuous f : Xξ → R,
limt→∞ Pt f = μ̃ξ f .

We will now show how the space of lattices can be viewed as a subspace of the space of
point processes in R

d . The extension of this to marked point processes will be a key element
in this paper.

LetM(Rd) be the space of locally finite Borel measures on R
n , equipped with the vague

topology. The vague topology is the smallest topology such that the function

f̂ : M(Rd)→ R, μ �→ μ f (2.15)

is continuous for every f ∈ Cc(R
d) (the space of continuous functions R

d → R with
compact support). The space M(Rd) is Polish in this topology [13, Theorem A 2.3]. We
embed the space of affine lattices in M(Rd) by the map

ι : X → M(Rd), x �→
∑

y∈Zd x

δ y. (2.16)

For technical reasons (which will become clear in Corollary 2.4) we will need to treat the
space of lattices X0 slightly differently; define

ι0 : X0 → M(Rd), x �→
∑

y∈Zd x\{0}
δ y. (2.17)

Proposition 2.2 The maps ι and ι0 are topological embeddings.

Proof To establish the continuity of ι, we need to show that, for every f ∈ Cc(R
d), x j → x

in X implies ι(x j ) f → ι(x) f . By the�-equivariance of ι, it is sufficient to show that g j → g
in G implies ∑

y∈Zd g j

f ( y) →
∑

y∈Zd g

f ( y). (2.18)

Let A be the compact support of f . Since g j → g, the closure of A′ = ∪ j (Ag
−1
j ) is compact.

Hence Z
d ∩ A′ is finite. For a ∈ Z

d \ A′ we have f (ag j ) = f (ag) = 0, and for the finitely
many a ∈ Z

d ∩ A′ we have f (ag j ) → f (ag).
The map ι is injective, since the lattice Z

d x uniquely determines x ∈ �\G. Let ι̃ : X →
ι(X), x �→ ι(x). To establish the continuity of ι̃−1, we need to show that ι(x j ) f → ι(x) f
for every f ∈ Cc(R

d) implies x j → x in X . Fix g = (M, ξ) ∈ �x . Then e1M, . . . , enM
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forms a basis of Z
dM , where ek are the standards basis vectors of Z

d . Set e0 = 0 and define
for k = 0, 1, . . . , n,

fk,δ( y) =

⎧
⎪⎨

⎪⎩

1 if ‖ y − ekg‖ < δ
2

2 − 2
δ
‖ y − ekg‖ if δ

2 � ‖ y − ekg‖ < δ

0 if ‖ y − ekg‖ � δ.

(2.19)

Note that fk,δ ∈ Cc(R
d). By the discreteness of Z

dg, there is δ0 > 0 such that for all
δ ∈ (0, δ0], all k = 0, 1, . . . , n,

ι(x) fk,δ =
∑

y∈Zd g

fk,δ( y) = fk,δ(ekg) = 1. (2.20)

Since by assumption ι(x j ) fk,δ → ι(x) fk,δ = 1, given δ > 0, there is j0 ∈ N such that for
every j � j0 and for every k, there is at least one element in Z

d x j within distance δ to ekg.

Call this element y( j)
k . Then

y( j)
k → ekg = ekM + ξ for every k = 0, 1, . . . , d, (2.21)

and therefore

y( j)
k − y( j)

0 → ekg − e0g = ekM for every k = 1, . . . , d. (2.22)

Because of this and the fact that the lattices Z
d x j − y( j)

0 and Z
d x − ξ both have covolume

one, the vectors y( j)
1 − y( j)

0 , . . . , y( j)
n − y( j)

0 form a basis of Z
d x j − y( j)

0 (for all sufficiently
large j). Then

Mj :=

⎛

⎜
⎜
⎝

y( j)
1 − y( j)

0
...

y( j)
n − y( j)

0

⎞

⎟
⎟
⎠ ∈ G0, ξ j := y( j)

0 . (2.23)

Now (2.21) implies g j = (Mj , ξ j ) → g = (M, ξ) and thus x j → x .
The proof for ι0 is almost identical. �

Every random element ζ in X defines a point process 
 = ι(ζ ) in M(Rd). Let ζt be the
random element distributed according to Pt , and ζ according to μ̃ξ , with ξ /∈ Z

d . Theorem2.1

can then be rephrased as ζt
d−→ ζ . In view of Proposition 2.2 and the continuous mapping

theorem [13, Theorem 4.27], this is equivalent to the following convergence in distribution
for the point processes 
t = ι(ζt ) and 
 = ι(ζ ) in the case ξ /∈ Z

d , 
0,t = ι0(ζt ) and

0 = ι0(ζ ) for ξ ∈ Z

d . To simplify notation we suppress the dependence on ξ ; 
 depends
on the choice of ξ ∈ R

d \ Z
d .

Theorem 2.3 For t → ∞,


t
d−→ 


(
ξ /∈ Z

d
)

, 
0,t
d−→ 
0

(
ξ ∈ Z

d
)

. (2.24)

We now turn to the finite-dimensional distribution of the above point processes, cf. [17,
Sec. 5].
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Corollary 2.4 Let n ∈ N and A1, . . . , An ⊂ R
d bounded Borel sets with Leb(∂Ai ) = 0 for

all i . Then, for t → ∞,

(
t A1, . . . , 
t An)
d−→ (
A1, . . . , 
An)

(
ξ /∈ Z

d
)

, (2.25)

(

0,t A1, . . . , 
0,t An

) d−→ (
0A1, . . . , 
0An)
(
ξ ∈ Z

d
)

. (2.26)

In view of [13, Theorem 16.16], the main ingredient in the derivation of Corollary 2.4
from Theorem 2.3 is to show that Leb(∂Ai ) = 0 implies that 
∂Ai = 0 almost surely, and

0∂Ai = 0 almost surely. This follows from Siegel’s integral formula [25,26], which says
that E 
0B = Leb(B), E 
B = Leb(B) for every B ∈ B(Rd) (note that this identity is
straightforward for ξ /∈ Q

d , since it follows directly from the translation invariance of 
).
Note that 
∂Ai = 0 fails for ξ ∈ Z

d if 0 ∈ ∂Ai . This is the reason for removing 0 in the
definition (2.17) of ι0. But Siegel’s formula implies Leb(∂Ai ) = 0 if and only if 
0∂Ai = 0
(resp.
∂Ai = 0) almost surely. Therefore the statement of Corollary 2.4 is in fact equivalent
to Theorem 2.3 via [13, Theorem 16.16]. We will exploit the analogue in the treatment of
marked lattices.

The following lemmas will be useful below.

Lemma 2.5 For A ∈ B(Rd),

P(
A � 1) � Leb A
(
ξ /∈ Z

d
)

, P(
0A � 1) � Leb A. (2.27)

Proof This follows from Chebyshev’s inequality followed by Siegel’s formula. �
Lemma 2.6 For A ∈ B(Rd) and L ∈ Z�0,

P(
A � L) �A,ξ

{
(1 + L)−d−1

(
ξ /∈ Q

d
)
,

(1 + L)−d
(
ξ ∈ Q

d \ Z
d
)
,

(2.28)

and
P(
0A � L) �A (1 + L)−d . (2.29)

Proof See [15, Theorems 4.3, 4.5]. �

3 Marked lattices and marked point processes

We will now extend the discussion in the previous section to the space of marked lattices,
which is defined as a certain fiber bundle over the space of lattices. The key point is now to
identify this space with a marked point process.

Each map ω : Z
d → Y , where Y is the set of marks, produces a marking of the affine

lattice Z
dg with g ∈ G: the point y ∈ Z

dg has mark ω( yg−1). A Y -marked affine lattice is
thus the point set {

(mg, ω(m)) | m ∈ Z
d
}

(3.1)

in R
d × Y , and can be parametrized by the pair (g, ω) ∈ G × �, where � = {ω : Z

d → Y }
is the set of all possible markings. Note that, for γ ∈ �, the point y = mγ g ∈ Z

d g has mark

ω
(
yg−1) = ω (mγ ) = ωγ

(
y(γ g)−1) , (3.2)
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where ωγ (m) := ω(mγ ). Hence (g, ω) and (γ g, ωγ ) yield the same marked affine lattice.
This motivates the definition of the left action of � on G × � by γ (g, ω) := (γ g, ωγ ). We
define a right action ofG onG×� by (g, ω)g′ := (gg′, ω). In analogywith the homogeneous
space setting we define

X := �\(G × �) (3.3)

and
Xξ := �\�(Gξ × �)(1, ξ). (3.4)

For the case ξ ∈ Z
d , we have

Xξ = �\�((1, ξ)G0 × �) = �\�(G0 × (1,−ξ)�) = �\�(G0 × �) = X0. (3.5)

which in turn can be identified with the space �0\(G0 × �) via the map �((M, 0), ω) �→
�0(M, ω). Note that the point�((1, ξ)M, ω) = �(M, ω(1,−ξ)) is mapped to�0(M, ω(1,−ξ))

under this identification.

Lemma 3.1 The map

�(g, ω) �→
{
(mg, ω(m)) | m ∈ Z

d
}

(3.6)

yields a one-to-one correspondence between X and Y -marked affine lattices of covolume
one.

Proof For (g, ω) and (g′, ω′) to yield the same marked lattice, it is necessary that Z
dg =

Z
dg′. Hence g′ = γ g for some γ ∈ �. But this implies ω′ = ωγ and hence (g′, ω′) =

γ (g, ω). �

Wenowextend the above correspondences to the topological setting. LetY be a topological
space, and endow the space of all markings � = YZ

d
with the product topology. Define the

topology of G × � by the product topology, and on X , Xξ by the quotient and subspace
topology, respectively. If Y is locally compact second countable Hausdorff (lcscH), then
R
d ×Y is lcscH. Consider the measurable space (Y,B(Y )) with Borel σ -algebraB(Y ), and

define M(Rd × Y ) as the space of σ -finite Borel measures on R
d × Y equipped with the

vague topology. Under these assumptions, M(Rd × Y ) is Polish [13, Theorem A 2.3].
Set

� : X → M
(
R
d × Y
)

, �(g, ω) �→
∑

y∈Zd g

δ( y,ω( yg−1)) (3.7)

and

�0 : X0 → M(Y ) × M
(
R
d × Y
)

, �(g, ω) �→
(

δω(0g−1),
∑

y∈Zd g\{0}
δ( y,ω( yg−1))

)

.

(3.8)
These maps are well-defined and injective by Lemma 3.1. Note that �0 maps the point
�((1, ξ)M, ω) = �(M, ω(1,−ξ)) with ξ ∈ Z

d , M ∈ G0 to

(

δω(−ξ),
∑

m∈Zd\{0}
δ(mM,ω(m−ξ)

)

. (3.9)
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Proposition 3.2 The maps � and �0 are topological embeddings.

Proof To prove continuity of �, we need to show that (g j , ω j ) → (g, ω) in G × � implies

∑

y∈Zd g j

f
(
y, ω j

(
yg−1

j

))
→
∑

y∈Zd g

f
(
y, ω
(
yg−1)) (3.10)

for every f ∈ Cc(R
d × Y ). As in the proof of Proposition 2.2, the compact support of

f reduces the problem to showing that f (ag j , ω j (a)) → f (ag, ω(a)) for finitely many
a ∈ Z

d . The latter follows from the continuity of f .
Let �̃ : X → �(X ), x �→ �(x). To establish the continuity of �̃−1, we need to show that

�(x j ) f → �(x) f for every f ∈ Cc(R
d × Y ) implies x j → x in X . We already know from

Proposition 2.2 that g j → g. Fix m ∈ Z
d , and define for g ∈ G, h ∈ Cc(Y ),

fh,δ( y, t) =

⎧
⎪⎨

⎪⎩

h(t) if ‖ y − mg‖ < δ
2

(2 − 2
δ
‖ y − mg‖)h(t) if δ

2 � ‖ y − mg‖ < δ

0 if ‖ y − mg‖ � δ.

(3.11)

Note that fh,δ ∈ Cc(R
d × Y ). By the discreteness of Z

dg, there is δ0 > 0 such that for all
δ ∈ (0, δ0],

�(x) fh,δ =
∑

y∈Zd g

fh,δ

(
y, ω
(
yg−1)) = fh,δ (mg, ω(m)) = h(ω(m)). (3.12)

Since g j → g, for given δ > 0, there is j0 ∈ N such that for all j � j0,

�(x j ) fh,δ =
∑

y∈Zd g j

fh,δ

(
y, ω j

(
yg−1

j

))
= fh,δ

(
mg j , ω j (m)

) = h(ω j (m)). (3.13)

Now �(x j ) f → �(x) f for every f ∈ Cc(R
d × Y ) implies h(ω j (m)) → h(ω(m)) for

every fixed h ∈ Cc(Y ) and m ∈ Z
d . That is, δω j (m) → δω(m) in M(Y ). Any open set B

containing ω(m) satisfies δω(m)B = 1 and δω(m)∂B = 0. Thus δω j (m)B → 1 for any open
set B containing ω(m) [13, Theorem A 2.3], and therefore ω j (m) → ω(m). This implies
ω j → ω in the product topology of �.

The proof for �0 is similar to the above, with the following modifications. Equation (3.10)
is replaced by

(

f1
(
ω j
(
0g j

−1)) ,
∑

y∈Zd g j \{0}
f2
(
y, ω j

(
yg−1

j

)))

→
(

f1
(
ω
(
0g−1)) ,

∑

y∈Zd g\{0}
f2
(
y, ω
(
yg−1))

)

, (3.14)

for every ( f1, f2) ∈ Cc(Y ) × Cc(R
d × Y ), which is seen to hold as in the argument for �.

Let �̃0 : X → �0(X ), x �→ �0(x). To establish continuity of �̃−1
0 , it is enough to show

that
[
�0(x j )( f1, f2) → �0(x)( f1, f2), for all ( f1, f2) ∈ Cc(Y ) × Cc

(
R
2 × Y
)]⇒ [x j → x

]
.

(3.15)
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We know from Proposition 2.2 that g j → g, and need to show that ω j → ω. For any
m ∈ Z

d \ {0}, define fh2,δ as in (3.11). It follows from discreteness of Z
d g that there is

δ0 > 0 such that for all δ ∈ (0, δ0],

�0(x)(h1, fh2,δ) =
(

h1(0),
∑

y∈Zd g\{0}
fh2,δ
(
y, ω
(
yg−1))

)

(3.16)

= (h1(ω(0)), fh2,δ(mg, ω(m))
)

(3.17)

= (h1(ω(0)), h2(ω(m))) . (3.18)

Since g j → g, we have

�0(x j )(h1, fh2,δ) = (h1
(
ω j (0)
)
, h2
(
ω j (m)

))
(3.19)

for all j � j0. Thus, we have
(
h1(ω j (0)), h2(ω j (m))

)→ (h1(ω(0)), h2(ω(m))) (3.20)

for all bounded continuous functions h1, h2 andm ∈ Z
d \{0}, inasmuch as (δω j (0), δω j (m)) →

(δω(0), δω(m)) in M(Y ) × M(Rd × Y ) for each m ∈ Z
d \ {0}. This implies that ω j → ω in

the product topology on �, as needed. �
To define probabilitymeasures on the spaceXξ of affinemarked lattices, let us fix a random

field η : Z
d → Y , m �→ η(m) defined by the probability measure ν on the measurable space

(�,B) (where B = B(�) is the Borel σ -algebra on � = YZ
d
with respect to the product

topology) via

P (η(m1) ∈ A1, . . . , η(mk) ∈ Ak) = ν {ω ∈ � | ω(m1) ∈ A1, . . . , ω(mk) ∈ Ak}
(3.21)

for all A1, . . . , Ak ∈ B(Y ). In other words, η is a random element in� distributed according
to ν.

We define the mixing coefficient of order k of the random field η by

ϑk(s) = sup
{
ϑk(m1, . . . ,mk)

∣
∣m1, . . . ,mk ∈ Z

d , ‖mi − m j‖ � s if i �= j
}
, (3.22)

where ‖ · ‖ is the Euclidean norm, and

ϑk(m1, . . . ,mk) := sup
A1,...,Ak∈B(Y )

∣
∣P(η(m1) ∈ A1, . . . , η(mk) ∈ Ak)

− P(η(m1) ∈ A1) . . . P(η(mk) ∈ Ak)
∣
∣. (3.23)

We say η is mixing of order k if
lim
s→∞ ϑk(s) = 0, (3.24)

and mixing of all orders if it is mixing of order k for all k ∈ N. Note that mixing of order two
need not imply mixing of order three; cf. Ledrappier’s “three dots” example [6,14].

Given ξ ∈ R
d and a probability measure ρ on Y , we also define

βξ (s) = sup
‖m+ξ‖�s

sup
A∈B(Y )

∣
∣P(η(m) ∈ A) − ρ(A)

∣
∣. (3.25)

If lims→∞ β0(s) = 0, we say η has asymptotic distribution ρ. The presence of ξ in (3.25) is
purely for notational convenience further on.
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The above mixing conditions will be sufficient for the results in Sect. 4. We will need the
following stronger variant for our main results in Sect. 5.

Given a non-empty subset J ⊂ Z
d and a map a : J → Y , we define the cylinder set

�a = {ω ∈ � | ω(m) = a(m) ∀m ∈ J } . (3.26)

The subalgebra generated by all cylinder sets �a for a given J is denoted by BJ . The
separation of two non-empty subsets J1, J2 ⊂ Z

d is defined as

sep(J1, J2) = min
{‖m1 − m2‖ : m1 ∈ J1, m2 ∈ J2

}
. (3.27)

We define the strong-mixing coefficient of the random field η by

α(s) = sup
{
α(J1, J2)

∣
∣J1, J2 ⊂ Z

d non-empty, sep(J1, J2) � s
}
, (3.28)

where

α(J1, J2) := sup
{∣∣ν
(
A1 ∩ A2

)− ν(A1)ν(A2)
∣
∣ : A1 ∈ BJ1 , A2 ∈ BJ2

}
. (3.29)

We say η is strongly mixing if
lim
s→∞ α(s) = 0. (3.30)

Note that, in the case of singleton sets, we have

α ({m1} , {m2}) = ϑ2 (m1,m2) . (3.31)

Thus strong mixing implies mixing of order two. In fact, strong mixing implies mixing of
any order. This follows from the following observation. For k � 2, put

αk(s) := sup
{
αk(J1, . . . , Jk)

∣
∣J1, . . . , Jk ⊂ Z

d non-empty, sep(Ji , J j ) � s for i �= j
}
,

(3.32)
where

αk(J1, . . . , Jk) := sup

{∣∣
∣
∣ν
(
A1 ∩ · · · ∩ Ak

)−
k∏

i=1

ν(Ai )

∣
∣
∣
∣ : Ai ∈ BJi

}

. (3.33)

Lemma 3.3 If α(s) → 0 then αk(s) → 0 and ϑk(s) → 0 for all k � 2.

Proof Note that αk(s) → 0 implies ϑk(s) → 0, since

αk({m1}, . . . , {mk}) = ϑk(m1, . . . ,mk). (3.34)

We will show that αk(s) → 0 implies αk+1(s) → 0. The claim then follows by induction on
k. We have BJi ⊂ BJ for J := J1 ∪ · · · ∪ Jk and therefore

A := A1 ∩ · · · ∩ Ak ∈ BJ . (3.35)

This in turn implies

αk+1(J1, . . . , Jk+1) = sup

{∣∣
∣
∣ν
(
A ∩ Ak+1

)−
k+1∏

i=1

ν(Ai )

∣
∣
∣
∣ : Ai ∈ BJi

}

(3.36)

� sup

{∣∣
∣
∣ν
(
A ∩ Ak+1

)− ν(A)ν(Ak+1)

∣
∣
∣
∣ : A ∈ BJ , Ak+1 ∈ BJk+1

}

(3.37)

+ sup

{∣∣
∣
∣ν(A)ν(Ak+1) −

k+1∏

i=1

ν(Ai )

∣
∣
∣
∣ : Ai ∈ BJi

}

. (3.38)
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The first term equals α(J, Jk+1), and the second satisfies

sup

{∣∣
∣
∣ν(A)ν(Ak+1) −

k+1∏

i=1

ν(Ai )

∣
∣
∣
∣ : Ai ∈ BJi

}

� sup

{∣∣
∣
∣ν(A) −

k∏

i=1

ν(Ai )

∣
∣
∣
∣ : Ai ∈ BJi

}

= αk(J1, . . . , Jk), (3.39)

because ν(Ak+1) � 1. Therefore αk+1(s) � αk(s) + α(s), which yields the desired conclu-
sion. �

An important example of a (strongly) mixing random field is the case when η is a field
of i.i.d. random elements with law ρ, and thus α(s) = 0 for all s. In this case we write
ν = νρ . Note that νρ is invariant under the �-action on �. Given such νρ , consider the
product measureμξ ×νρ on Gξ ×�. We denote the push-forward of this measure (restricted
to a fundamental domain for the �-action) under the projection map

Gξ × � → Xξ , (g, ω) �→ �(g, ω)(1, ξ) (3.40)

by μ̃ξ ,ρ . Recall μξ is normalized so that it projects to a probability measure on Xξ , which
implies μ̃ξ ,ρ is a probabilitymeasure.Note that μ̃ξ ,ρ iswell defined thanks to the�-invariance
of νρ .

A random element ζ in Xξ defines a point process � = �(ζ ) in M(Rd × Y ). The Siegel
formula for the space of lattices yields:

Lemma 3.4 Let ξ /∈ Z
d . For D ∈ B(Rd × Y ),

E �D = (Leb×ρ)D. (3.41)

Proof It suffices to consider D = A × B with A ∈ B(Rd) and B ∈ B(Y ). Since the
η(m) are independent with law ρ, we have �D = 
(A)ρ(B). The expectation is E �D =
E(
A)ρ(B) = Leb(A)ρ(B) by Siegel’s formula. �

A further special case is when {η(m),m ∈ Z
d} is a collection of independent random

variables with η(0) distributed according to ρ0 and η(m) distributed according to ρ when
m �= 0. In this case we write ν = νρ0,ρ . Note that νρ0,ρ is now invariant under the �0-action
on �. Given such νρ0,ρ , consider the product measure μ0 × νρ0,ρ on G0 × �. We denote the
push-forward of this measure (restricted to a fundamental domain for the �0-action) under
the projection map

G0 × � → X0, (g, ω) �→ �(g, ω) (3.42)

by μ̃0,ρ0,ρ . Since μ0 is normalized so that it projects to a probability measure on X0, also
μ̃0,ρ0,ρ is a probability measure. Here μ̃0,ρ0,ρ is well defined because of the �0-invariance
of νρ0,ρ . A random element ζ in X0 defines a random product measure (ϕ,�0) = �(ζ ) in
M(Y ) × M(Rd × Y ), where ϕ is a point mass and �0 a point process.

Lemma 3.5 For D ∈ B(Y × R
d × Y ),

E(ϕ,�0)D = (ρ0 × Leb×ρ)D. (3.43)

Proof It is sufficient to consider D = B0 × A × B with A ∈ B(Rd) and B0, B ∈ B(Y ).
Since the η(m), η(0) are independent with law ρ and ρ0 respectively, we have �D =
ρ0(B0)
0(A)ρ(B). The expectation isE �D = ρ0(B0) E(
0A)ρ(B), and the claim follows
from Siegel’s formula E 
0A = Leb A. �
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4 Spherical averages in the space of marked lattices: convergence on
average

Let t ∈ R, M ∈ G0, ξ ∈ R
d , ω ∈ �, U ⊂ R

d−1 a bounded set with measure zero boundary
(as in Sect. 2), λ an absolutely continuous Borel probabilitymeasure onU , and ν a probability
measure on � defined by the random field η.

We define the Borel probability measures Pω
t = P(ξ ,M,ω,λ)

t and Qt = Q(ξ ,M,ν,λ)
t on Xξ

by

Pω
t f =

∫

u∈U
f (�((1, ξ)ME(u)�t , ω))λ(du), (4.1)

Qt f =
∫

ω′∈�

∫

u∈U
f (�((1, ξ)ME(u)�t , ω′))λ(du)dν(ω′), (4.2)

for bounded continuous functions f : Xξ → R. The principal result of this paper is that
Pω
t converges weakly to μ̃ξ ,ρ (if ξ /∈ Z

d ) or μ̃0,ρ0,ρ (if ξ ∈ Z
d ) for ν-almost every ω

(Theorem 5.1). We will first prove this fact for the averaged Qt .

Theorem 4.1 Assume the random field η is mixing of all orders with asymptotic distribution
ρ. Then, for t → ∞,

Qt
w−→
{

μ̃ξ ,ρ

(
ξ /∈ Z

d
)

μ̃0,ρ0,ρ
(
ξ ∈ Z

d
)
,

(4.3)

where ρ0 is the law of η(−ξ).

Let ζt be the random element distributed according to Qt , and ζ according to μ̃ξ ,ρ .

Theorem 4.1 (ξ /∈ Z
d) can then be rephrased as ζt

d−→ ζ . Similarly, for ξ ∈ Z
d , let ζt be

the random element distributed according to Qt , and ζ according to μ̃0,ρ0,ρ . Theorem 4.1

(ξ ∈ Z
d) can then be expressed as well as ζt

d−→ ζ . In view of Proposition 2.2 and
the continuous mapping theorem [13, Theorem 4.27], this is equivalent to the following
convergence in distribution for the random measures �t = �(ζt ) and � = �(ζ )(ξ /∈ Z

d),
(ϕt , �0,t ) = �0(ζt ) and (ϕ,�0) = �0(ζ )(ξ ∈ Z

d).

Theorem 4.2 Assume η is mixing of all orders with asymptotic distribution ρ. Then, for
t → ∞,

�t
d−→ �

(
ξ /∈ Z

d
)

, (ϕt , �0,t )
d−→ (ϕ,�0)

(
ξ ∈ Z

d
)

. (4.4)

Theorem 4.2 (and hence Theorem 4.1) follows from the convergence of finite-dimensional
distributions by [13, Theorem 16.16] stated in the following propositions.

Proposition 4.3 Let ξ /∈ Z
d , andassumeη ismixing of all orderswith asymptotic distribution

ρ. Let n ∈ N, D1, . . . , Dn ∈ B(Rd × Y ) bounded with �∂Di = 0 almost surely for all i .
Then, for t → ∞,

(�t D1, . . . , �t Dn)
d−→ (�D1, . . . , �Dn) . (4.5)

Proposition 4.4 Let ξ ∈ Z
d , andassumeη ismixing of all orderswith asymptotic distribution

ρ. Let n ∈ N, D1, . . . , Dn ∈ B(Rd × Y ) bounded with �0∂Di = 0 almost surely for all i ,
and B0 ∈ B(Y ) with ϕ∂B0 = 0 almost surely. Then, for t → ∞,
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(
ϕt B0, �0,t D1, . . . , �0,t Dn

) d−→ (ϕB0, �0D1, . . . , �0Dn) . (4.6)

Proof of Proposition 4.3 It is sufficient to consider test sets of the form Di = Ai × Bi with
Ai ∈ B(Rd) bounded and Bi ∈ B(Y ) such that �∂(Ai × Bi ) = 0 almost surely. In view
of Lemma 3.4 the latter is equivalent to (Leb×ρ)∂(Ai × Bi ) = 0. We also assume without
loss of generality that Ai are pairwise disjoint.

Corollary 2.4, Lemma 2.5 and the Chebyshev inequality imply that for every bounded
D0 = A0 × B0 we have

lim sup
t→∞

P (�t D0 � 1) � lim sup
t→∞

P (
t A0 � 1) � P
(

A0 � 1

)
� Leb A0. (4.7)

Hence sets D0 = A0 × B0 where the closure of A0 has small Lebesgue measure have small
probability, and we can thus remove such sets from the Di . This explains why, without loss
of generality, we may assume from now on that the Ai are convex and that the hyperplane
{x1 = 0} does not intersect the closure A of A := ∪n

i=1Ai . Set

Lt,u = Z
d(1, ξ)ME(u)�t , (4.8)

and write q = m(1, ξ)ME(u)�t ∈ Lt,u with m ∈ Z
d uniquely determined by q. Writing

e1 = (1, 0, . . . , 0) for the first standard basis vector in R
d , we have

q · e1 = m(1, ξ)ME(u)�t · e1 = e−(d−1)t (m + ξ)ME(u) · e1 (4.9)

and hence for some constants cM > 0, cA,M > 0 (depending only on M resp. A and M)
∥
∥m + ξ‖ � cM

∥
∥(m + ξ)M‖ � cMe(d−1)t

∣
∣q · e1

∣
∣ � cA,Me(d−1)t , (4.10)

uniformly for all q ∈ A, t � 0.
For a small parameter ε > 0 to be chosen later write U = U (ε)

1 ∪U (ε)
2 , where

U (ε)
1 = {u ∈ U : ∃q1 �= q2 ∈ A ∩ Lt,u s.t. |(q1 − q2) · e1| < ε

}
(4.11)

and U (ε)
2 = U \ U (ε)

1 . The set U (ε)
2 comprises directions corresponding to lattice points

m ∈ Z
d that are εe(d−1)t -separated. That is, for q1 = m1(1, ξ)ME(u)�t and q2 =

m2(1, ξ)ME(u)�t with u ∈ U (ε)
2 , we have

(q1 − q2) · e1 = (m1 − m2)ME(u)�t · e1 = e−(d−1)t (m1 − m2)ME(u) · e1 (4.12)

and hence
∥
∥m1 − m2‖ � cM

∥
∥(m1 − m2)M‖ � cMe(d−1)t

∣
∣(q1 − q2) · e1

∣
∣ � cMεe(d−1)t . (4.13)

We will use the higher-order mixing property to show that markings at such points become
independent. The set U (ε)

1 includes directions in which there are some lattice points that are
close. We will show that the measure of such directions tends to zero as ε → 0.

For non-negative integers r1, . . . , rn ,

P
(
�t (Ai × Bi ) = ri ∀i) = P

(
�t (Ai × Bi ) = ri ∀i | u ∈ U (ε)

2

)
+ O
(
λ(U (ε)

1 )
)

. (4.14)

We deal with the first term by writing

P

(
�t (Ai × Bi ) = ri ∀i | u ∈ U (ε)

2

)

=
∑

l1,...,ln�0

P

(
�t (Ai × Bi ) = ri , �t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)
. (4.15)
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Split the summation into terms with maxi li � L and maxi li > L for some large L . For the
latter,

∑

l1,...,ln�0
maxi li>L

P

(
�t (Ai × Bi ) = ri , �t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)
(4.16)

�
∑

l1,...,ln�0
maxi li>L

P
(
�t (Ai × Y ) = li ∀i) (4.17)

� P
(
�t (A × Y ) > L

) = P
(

t (A) > L

)
, (4.18)

and by Corollary 2.4 there is t0(L , A) such that for all t > t0(L , A),

P
(

t (A) > L

)
� 1.01 × P

(

(A) > L

) = O
(
(1 + L)−d

)
, (4.19)

where the last bound follows from Lemma 2.6. We conclude that, for all L � 1,

lim sup
t→∞

∑

l1,...,ln�0
maxi li>L

P

(
�t (Ai × Bi ) = ri , �t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)

= O
(
(1 + L)−d

)
. (4.20)

Let us now turn to the remaining term
∑

0�l1,...,ln�L

P

(
�t (Ai × Bi ) = ri , �t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)
. (4.21)

The only terms which contribute are those with li � ri . We have

P

(
�t (Ai × Bi ) = ri , �t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)
(4.22)

= 1

λ(U (ε)
2 )

∫

U (ε)
2

P (# {m ∈ Ji : η(m) ∈ Bi } = ri ∀i | u)1{#J1=l1} . . .1{#Jn=ln}dλ(u),

where Ji = Lt,u ∩ Ai . By the choice of U (ε)
2 , all contributing lattice points are cMεe(d−1)t -

separated, and so, by mixing of all orders,

P (#{m ∈ Ji : η(m) ∈ Bi } = ri ∀i | u)

=
n∏

i=1

( ∑

S⊂Ji

( ∏

m∈S
P (η(m) ∈ Bi ) ×

∏

m/∈S
P (η(m) /∈ Bi )

))

+OL
(
ϑnL
(
cMεe(d−1)t)), (4.23)

where the sum is over all subsets S of Ji of cardinality ri . There are
(li
ri

)
such subsets.

Again by the choice ofU (ε)
2 , all contributing lattice points are furthermore at distance at least

cA,Me(d−1)t from ξ . Since η has the asymptotic distribution ρ, we therefore have

P (#{m ∈ Ji : η(m) ∈ Bi } = ri ∀i | u) =
n∏

i=1

(li
ri

)
prii (1 − pi )

li−ri + OL
(
ϑnL
(
cMεe(d−1)t))

+ OL
(
βξ

(
cA,Me(d−1)t)), (4.24)
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where pi = ρ(Bi ). Now

1

λ(U (ε)
2 )

∫

U (ε)
2

1{#J1=l1} . . .1{#Jn=ln}dλ(u) = P

(
�t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)
(4.25)

= P (�t (Ai × Y ) = li ∀i) + O
(
λ
(
U (ε)
1

))
,

(4.26)

and thus

L∑

l1=r1

. . .

L∑

ln=rn

P

(
�t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

) n∏

i=1

(li
ri

)
prii (1 − pi )

li−ri

=
L∑

l1=r1

. . .

L∑

ln=rn

P (�t (Ai × Y ) = li ∀i)
n∏

i=1

(li
ri

)
prii (1 − pi )

li−ri + O
(
λ
(
U (ε)
1

))
,

(4.27)

where the implied constants are l-independent. Therefore, using Corollary 2.4,

lim sup
t→∞

∣
∣
∣
∣
∑

0�l1,...,ln�L

P

(
�t (Ai × Bi ) = ri , �t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)

−
L∑

l1=r1

. . .

L∑

ln=rn

P (
(Ai ) = li ∀i)
n∏

i=1

(li
ri

)
prii (1 − pi )

li−ri

∣
∣
∣
∣� E (ε), (4.28)

where
E (ε) := lim sup

t→∞
λ(U (ε)

1 ). (4.29)

As observed earlier,

∑

l1,...,ln�0
maxi li>L

P (
(Ai ) = li ∀i) = O
(
(1 + L)−d

)
, (4.30)

by Lemma 2.6. This yields

lim sup
t→∞

∣
∣
∣
∣
∑

0�l1,...,ln�L

P

(
�t (Ai × Bi ) = ri , �t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)

−
∞∑

l1=r1

· · ·
∞∑

ln=rn

P (
(Ai ) = li ∀i)
n∏

i=1

(li
ri

)
prii (1 − pi )

li−ri

∣
∣
∣
∣� (1 + L)−d + E (ε).

(4.31)

By the definition of �,

∞∑

l1=r1

· · ·
∞∑

ln=rn

P (
(Ai ) = li ∀i)
n∏

i=1

(li
ri

)
prii (1 − pi )

li−ri = P (�(Ai × Bi ) = ri ∀i) .

(4.32)
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Combining the estimates (4.20) and (4.31) yields for L → ∞,

lim sup
t→∞

∣
∣
∣P
(
�t (Ai × Bi ) = ri ∀i | u ∈ U (ε)

2

)
− P (�(Ai × Bi ) = ri ∀i)

∣
∣
∣� E (ε).

(4.33)

Here ε > 0 is arbitrary. In view of (4.14) and (4.33), what remains to be shown is that
E (ε) → 0 as ε → 0. To this end, notice that

λ
(
U (ε)
1

)
�
∑

k∈Z
λ
{
u ∈ U : #(A ∩ ([kε, kε + 2ε] × R

d−1) ∩ Z
d(1, ξ)ME(u)�t) � 2

}

=
∑

k∈Z
P
(

t
(
A ∩ ([kε, kε + 2ε] × R

d−1)) � 2
)
.

(4.34)
Since A is bounded, the number of non-zero terms in this sum is O(1/ε), where the implied
constant depends only on A (not on t). Taking the limit t → ∞ yields (Corollary 2.4)

E (ε) �
∑

k∈Z
P
(


(
A ∩ ([kε, kε + 2ε] × R

d−1)) � 2
)
. (4.35)

Because we have assumed that the closure of A does not meet the hyperplane {x1 = 0}, for
each k � 0 the set A ∩ ([kε, kε + 2ε] × R

d−1
)
is contained in the cylinder

Z(c1, c2,C) = {(x1, . . . , xd) ∈ R
d : c1 < x1 < c2, ‖(x2, . . . , xd)‖ < C

}
(4.36)

form some c1 > 0, c2 > c1+2ε, andC sufficiently large in terms of A. (The case of negative
k is analogous.) Therefore, when d = 2 and ξ ∈ Q

2, we have [17, Lemma 7.12]

P
(


(
A ∩ ([kε, kε + 2ε] × R

d−1)) � 2
) = O(ε2 log ε), (4.37)

and so E (ε) = O(ε log ε) → 0 as ε → 0. In all other cases we have (use [17, Lemmas 7.12]
for ξ ∈ Q

d , d � 3, and [17, Lemmas 7.13] for ξ /∈ Q
d , d � 2)

P
(


(
A ∩ ([kε, kε + 2ε] × R

d−1)) � 2
) = O(ε2), (4.38)

that is E (ε) = O(ε) → 0 as ε → 0. �

Proof of Proposition 4.4 The proof is almost the same as that of Proposition 4.3.We have that
�0,t is a random point process on R

d that is jointly measurable with a random variable on Y
whose marginal is ϕt . We follow the steps of the previous proof until (4.14). For ri ∈ N∪{0},
i � 1, we have

P
(
ϕt B0 = 1, �0,t (Ai × Bi ) = ri ∀i) (4.39)

= P

(
ϕt B0 = 1, �0,t (Ai × Bi ) = ri ∀i | u ∈ U (ε)

2

)
+ O
(
λ
(
U (ε)
1

))
. (4.40)
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The next substantive modification is in the application of mixing of order nL in (4.21), which
becomes
∑

0�l1,...,ln�L

P

(
ϕt B0 = 1, �0,t (Ai × Bi ) = ri , �0,t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)
(4.41)

=
L∑

l1=r1

· · ·
L∑

ln=rn

P(ϕt B0 = 1) P

(
�0,t (Ai × Y ) = li ∀i | u ∈ U (ε)

2

)
(4.42)

×
( n∏

i=1

(li
ri

)
prii (1 − pi )

li−ri + OL
(
ϑnL+1

(
cMεe(d−1)t))+ OL

(
βξ

(
cA,Me(d−1)t))

)

.

(4.43)

Note that here P(ϕt B0 = 1) = P(ϕB0 = 1) = ρ0(B0). The remainder of the proof runs
parallel to that of Proposition 4.3. �

5 Spherical averages in the space of marked lattices: almost sure
convergence

Let us now turn to the main result of this paper. We say the random field η is slog-mixing
(slog stands for strongly super-logarithmic), if for every δ > 0

∞∑

t=0

α(eδt ) < ∞. (5.1)

This holds for instance when
α(s) � C (log s)−1−ε (5.2)

for all s � 2, with positive constants C , ε.

Main Theorem 5.1 Fix ξ ∈ R
d and M ∈ G0. Assume the random field η is slog-mixing

with asymptotic distribution ρ. Then there is a set �0 ⊂ � with ν(�0) = 1, such that for
every ω ∈ �0 and every a.c. Borel probability measure λ on U,

Pω
t

w−→
{

μ̃ξ ,ρ

(
ξ /∈ Z

d
)

μ̃0,ρ0,ρ
(
ξ ∈ Z

d
)
,

(5.3)

as t → ∞, where ρ0 = δω(−ξ).

Let ζω
t be the random element distributed according to Pω

t , and ζ according to μ̃ξ ,ρ .

Theorem 5.1 (ξ /∈ Z
d) says that ζω

t
d−→ ζ for ν-almost every ω. Similarly for ξ ∈ Z

d , let
ζω
t be the randomelement distributed according to Pω

t , and ζ according to μ̃0,ρ0,ρ whereρ0 =
δω(−ξ). Theorem 5.1 (ξ ∈ Z

d) can then be expressed as well as ζω
t

d−→ ζω for ν-almost-
every ω. (The ω-dependence of ζω is only through ρ0.) Again, in view of Proposition 2.2
and the continuous mapping theorem [13, Theorem 4.27], this is equivalent to the following
convergence in distribution for the random measures �ω

t = �(ζω
t ) and � = �(ζ ) (ξ /∈ Z

d ),
(ϕω

t , �ω
0,t ) = �0(ζ

ω
t ), (ϕω,�0) = �0(ζ

ω) (ξ ∈ Z
d ). Note that here ϕω

t = ϕω = δω(−ξ).
Thus, if ω is fixed, then ϕω

t is deterministic and independent of t , and we may state the
convergence solely for �ω

0,t rather than the joint distribution (ϕω
t , �ω

0,t ) used in the case of
random ω (Proposition 4.2).
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Theorem 5.2 Under the assumptions of Theorem 5.1, for every ω ∈ �0 and every a.c. Borel
probability measure λ on U,

�ω
t

d−→ �
(
ξ /∈ Z

d
)

, �ω
0,t

d−→ �0

(
ξ /∈ Z

d
)

. (5.4)

Again by [13, Theorem 16.16], Theorem 5.2 (and hence Theorem 5.1) follows from the
convergence of finite-dimensional distributions:

Proposition 5.3 Under the assumptions of Theorem 5.1 with ξ /∈ Z
d , for every ω ∈ �0,

every a.c. Borel probability measure λ on U, every n ∈ N and all D1, . . . , Dn ∈ B(Rd ×Y )

that are bounded with �∂Di = 0 almost surely for all i ,

(
�ω

t D1, . . . , �
ω
t Dn
) d−→ (�D1, . . . , �Dn) . (5.5)

Proposition 5.4 Under the assumptions of Theorem 5.1 with ξ ∈ Z
d , for every ω ∈ �0,

every a.c. Borel probability measure λ on U, every n ∈ N and all D1, . . . , Dn ∈ B(Rd ×Y )

that are bounded with �0∂Di = 0 almost surely for all i ,

(
�ω

0,t D1, . . . , �
ω
0,t Dn
) d−→ (�0D1, . . . , �0Dn) . (5.6)

The proof of these two propositions will require the following lemma. For each ζ > 0,
define Cζ ⊂ B(Rd × Y ) as the collection of sets D = A × B with the following properties:

(i) A ∈ B(Rd) is convex and contained in the ball of radius 1/ζ around the origin,
(ii) B ∈ B(Y ) such that (Leb×ρ)∂(A × B) = 0,
(iii) ([−ζ, ζ ] × R

d−1) ∩ A = ∅.

Lemma 5.5 Given ε > 0, ζ < ∞, there are constants s0, t0 such that for all t � t0, |s| � s0,
ω ∈ �, and every D ∈ Cζ (in fact we only require property (i) in the definition of Cζ ),

P
(
�ω

t D �= �ω
t+s D
)

< ε, P
(
�ω

0,t D �= �ω
0,t+s D

)
< ε. (5.7)

Proof We have

�ω
t+s(A × B) = #

{(
m(1, ξ)ME(u)�t+s, ω(m)

) ∈ A × B : m ∈ Z
d
}

= #
{(
m(1, ξ)ME(u)�t , ω(m)

) ∈ A�−s × B : m ∈ Z
d
}

= �ω
t

(
A�−s × B

)
,

(5.8)

and therefore
P
(
�ω

t D �= �ω
t+s D
)

� P
(

t (A�A�−s) � 1

)
. (5.9)

For the latter we have

lim
t→∞ P

(

t (A�A�−s) � 1

) = P
(

(A�A�−s) � 1

)
� Leb(A�A�−s), (5.10)

by Corollary 2.4 and Lemma 2.5. The claim follows from the fact that

lim
s→0

Leb(A�A�−s) = 0 (5.11)

uniformly for any convex A contained in a fixed ball. The proof for �ω
0,t is identical. �
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Proof of Proposition 5.3 We have
∫

�

P
(
�ω

t Di = ri ∀i)dν(ω) = P
(
�t Di = ri ∀i), (5.12)

where �t is the process considered in Proposition 4.3. Our first task is to show that

V 2(t) :=
∫

�

[
P
(
�ω

t Di = ri ∀i)− P
(
�t Di = ri ∀i)]2dν(ω) (5.13)

=
∫

�

[
P
(
�ω

t Di = ri ∀i)]2dν(ω) − P
(
�t Di = ri ∀i)2 (5.14)

decays sufficiently fast for large t , uniformly for all a.c. Borel probability measures λ on U
and all D1, . . . , Dn ∈ Cζ (with n arbitrary but fixed), thus allowing an application of the
Borel-Cantelli lemma to establish almost sure convergence.

Let �ω
t,1, �ω

t,2 be two independent copies of �ω
t . The corresponding rotation parameter

u is denoted by u1, u2, respectively, which are independent and distributed according to λ.
Then
∫

�

[
P
(
�ω

t Di = ri ∀i)]2dν(ω) =
∫

�

P
(
�ω

t,1Di = ri , �ω
t,2Di = ri ∀i)dν(ω). (5.15)

We condition on e1E(u1)−1, ±e1E(u2)−1 being close or not. Let θ0 � 1 be small to be
chosen later depending on t . If min± ‖e1E(u1)−1 ± e1E(u2)−1‖ � θ0, then we estimate
trivially to get
∫

�

P
(
�ω

t,1Di = ri , �ω
t,2Di = ri ∀i ∣∣ min± ‖e1E(u1)−1 ± e1E(u2)−1‖ � θ0

)
dν(ω)

(5.16)

� (λ × λ)
{
(u1, u2) ∈ U 2 : min± ‖e1E(u1)−1 ± e1E(u2)−1‖ � θ0

}
(5.17)

= (λ × λ)
{
(u1, u2) ∈ U 2 : ‖e1E(u1)−1 − e1E(u2)−1‖ � θ0

}
, (5.18)

for θ0 sufficiently small, since Ẽ(U ) is contained in a hemisphere (recall the assumptions
following (2.12)). Let M be the Lipschitz constant of the inverse of the map U → Ẽ(U ) ⊂
Sd−1
1 , u �→ e1E(u)−1. Then, using the fact that λ has density λ′ ∈ L1(U, du), we bound

(5.16) by

(λ × λ)
{
(u1, u2) ∈ U 2 : ‖u1 − u2‖ � Mθ0

}
(5.19)

� (λ × λ)
{
(u1, u2) ∈ U 2 : ‖u1 − u2‖ � Mθ0,max{λ′(u1), λ′(u2)} � K

}
(5.20)

+ (λ × λ)
{
(u1, u2) ∈ U 2 : ‖u1 − u2‖ � Mθ0,max{λ′(u1), λ′(u2)} > K

}
(5.21)

� K 2(Leb×Leb)
{
(u1, u2) ∈ U 2 : ‖u1 − u2‖ � Mθ0

}
(5.22)

+ λ
{
u ∈ U : λ′(u) > K

}
(5.23)

�U K 2M
d−1

θd−1
0 + 1

K
(5.24)

for any K � 1, where the implied constant depends only on U . If we pick K =
θ

−(d−1)/3
0 , we get the bound θ

(d−1)/3
0 for this regime. Consider the complementary case,

‖e1E(u1)−1 ± e1E(u2)−1‖ > θ0. Recall that for every i , the closure of Ai does not intersect
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a ζ -neighborhood of the hyperplane {x1 = 0}, and Ai is contained in a ball of radius 1/ζ . This
implies that the set Ai�

−t E(u)−1 asymptotically aligns in direction ±e1E(u)−1, avoiding
a e(d−1)t -neighborhood of the origin. More precisely, there is a constant Cζ > 0 such that

‖q1�−t E(u1)−1 − q2�
−t E(u2)−1‖ � Cζ θ0e

(d−1)t (5.25)

for all q1 ∈ Ai , q2 ∈ A j and all i, j . Hence for m1,m2 defined by

q1 = (m1 + ξ)ME(u1)�t , q2 = (m2 + ξ)ME(u2)�t , (5.26)

we have
‖m1 − m2‖ � cM‖(m1 − m2)M‖ � cMCζ θ0e

(d−1)t . (5.27)

This shows that the lattice points m1,m2 ∈ Z
d that contribute to u1 and u2 respectively, are

at distance at least cMCζ θ0e(d−1)t apart. Thus, by strong mixing,
∫

�

P
(
�ω

t,1Di = ri , �ω
t,2Di = ri ∀i ∣∣ ‖e1E(u1)−1 ± e1E(u2)−1‖ > θ0

)
dν(ω) (5.28)

= P
(
�t,1Di = ri , �t,2Di = ri ∀i ∣∣ ‖e1E(u1)−1 ± e1E(u2)−1‖ > θ0

)
(5.29)

+ O
(
α(cMCζ θ0e

(d−1)t )
)
, (5.30)

where �t,1, �t,2 are independent copies of �t , and the implicit constant in the error term is
independent of the choice of λ and of D1, . . . , Dn ∈ Cζ . Estimate (5.19) yields

P
(
�t,1Di = ri , �t,2Di = ri ∀i ∣∣ ‖e1E(u1)−1 ± e1E(u2)−1‖ > θ0

)
(5.31)

= P
(
�t,1Di = ri , �t,2Di = ri ∀i)+ O

(
θ

(d−1)/3
0

)
(5.32)

= P
(
�t Di = ri

)2 + O
(
θ

(d−1)/3
0

)
. (5.33)

Altogether we therefore have

sup
λ,D1,...,Dn

V 2(t) � α
(
cMCζ θ0e

(d−1)t
)

+ θ
(d−1)/3
0 , (5.34)

where the supremum is taken over all a.c. λ and all D1, . . . , Dn ∈ Cζ . If we choose θ0 = e−γ t

for any γ ∈ (0, d − 1), we get

sup
λ,D1,...,Dn

∑

t∈δN

V 2(t) �
∑

t∈δN

(
α
(
cMCζ e

(d−1−γ )t
)

+ e−γ (d−1)t/3
)

< ∞ (5.35)

for every δ > 0 by the slog-mixing assumption (5.1) and monotonicity of α. All of the above
estimates are uniform in λ and D1, . . . , Dn ∈ Cζ .

From the Borel–Cantelli Lemma we conclude that, for every ε > 0,

ν

{

ω ∈ � : sup
λ,D1,...,Dn

∣
∣P
(
�ω

kδDi = ri ∀i)− P
(
�kδDi = ri ∀i)∣∣ > ε for i.m. k ∈ N

}

= 0.

(5.36)

Now choose δ > 0 and k0 such that for all k � k0, 0 � s < δ,

sup
λ,D1,...,Dn

∣
∣P
(
�ω

kδDi = ri ∀i)− P
(
�ω

kδ+s Di = ri ∀i)∣∣ < ε

2
. (5.37)
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This is possible in view of Lemma 5.5, since
∣
∣P
(
�ω

kδDi = ri ∀i)− P
(
�ω

kδ+s Di = ri ∀i)∣∣ �
∑

i

P
(
�ω

kδDi �= �ω
kδ+s Di

)
. (5.38)

This shows that (set t = kδ + s)

ν

{

ω ∈ � : sup
λ,D1,...,Dn

∣
∣P
(
�ω
t Di = ri ∀i)− P

(
�δ�t/δ�Di = ri ∀i)∣∣ > ε

2
for i.m. t ∈ R+

}

=0.

(5.39)
By Proposition 4.3, for every a.c. λ and all D1, . . . , Dn ∈ Cζ ,

lim
t→∞ P

(
�δ�t/δ�Di = ri ∀i) = P

(
�Di = ri ∀i). (5.40)

Hence (5.39) implies that there is a set �ζ,n of full measure, such that for every ω ∈ �ζ,n ,
all a.c. λ and all D1, . . . , Dn ∈ Cζ ,

lim
t→∞ P

(
�ω

t Di = ri ∀i) = P
(
�Di = ri ∀i). (5.41)

Corollary 2.4, Lemma 2.5 and Chebyshev’s inequality imply that for every D0 = A0 × B0

we have

lim sup
t→∞

P(�ω
t D0 � 1) � lim sup

t→∞
P(
t A0 � 1) � P(
A0 � 1) � Leb A0 (5.42)

for all ω ∈ �. That is, the probability of having at least one point in a small-measure set
is small, which shows that (5.41) in fact holds for all sets of the form Di = Ai × Bi with
Ai ∈ B(Rd) bounded and Bi ∈ B(Y ) such that (Leb×ρ)∂(Ai × Bi ) = 0, provided

ω ∈ �n :=
∞⋂

k=1

�1/k,n . (5.43)

The convergence in (5.41) holds for all n for a given ω, if

ω ∈ �0 :=
∞⋂

n=1

�n, (5.44)

which still is a set of full measure. The extension of (5.41) from product sets Ai × Bi to
general sets Di follows from a standard approximation argument. �
Proof of Proposition 5.4 This is identical to the proof of Proposition 5.3,with Proposition 4.3
replaced by Proposition 4.4. �

We conclude this section with two corollaries of Theorem 5.1.

Corollary 5.6 Under the assumptions of Theorem 5.1, for every ω ∈ �0, every a.c. λ, and
every bounded continuous f : R

d−1 × Xξ → R,

lim
t→∞

∫

U

f (u, �((1, ξ)ME(u)�t , ω))λ(du) =
∫

U×Xξ

f dλ ×
{
dμ̃ξ ,ρ (ξ /∈ Z

d)

dμ̃0,ρ0,ρ
(
ξ ∈ Z

d
)
,

(5.45)
where ρ0 = δω(−ξ).
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Proof This follows from Theorem 5.1 by the same argument as in the proof of Theorem 5.3
in [17]. �

Let us assume that there is a continuous map ϕ : U × � → �. Then the following is an
immediate consequence of Corollary 5.6.

Corollary 5.7 Under the assumptions of Theorem 5.1, for every ω ∈ �0, every a.c. λ, and
every bounded continuous f : R

d−1 × Xξ → R,

lim
t→∞

∫

U

f (�((1, ξ)ME(u)�t , ϕ(u, ω)))λ(du)

=
∫

U×Xξ

f (�(g, ϕ(u, ω′))) dλ(u) ×
⎧
⎨

⎩

dμ̃ξ ,ρ(g, ω′) (ξ /∈ Z
d)

dμ̃0,ρ0,ρ(g, ω′)
(
ξ ∈ Z

d
)
,

(5.46)

where ρ0 = δω(−ξ).

Proof Apply Corollary 5.6 with the test functions f̃ defined by

f̃ (u, �(g, ω)) = f (�(g, ϕ(u, ω))). (5.47)

�

6 Random defects

Spherical averages were used in [17] and [19] to establish the limit distribution for the free
path length in crystals and quasicrystals, respectively. The plan for the remainder of this
paper is to explain how spherical averages on marked lattices can be exploited to yield
the path length distribution for crystals with random defects. The idea is to start with a
perfect crystal, whose scatterers are located at the vertices of an affine Euclidean lattice
L = Z

d(1, ξ)M , and then remove or shift each lattice point with a given probability. This
can be encoded by a marking of L as follows. The set of marks is Y = {0, 1} × R

d , where
the first coordinate describes the absence or presence of a lattice point, and the second
its relative shift measured in units of r = e−t . The corresponding marking is denoted
by ω = (a, z) with a : Z

d → {0, 1} and z : Z
d → R

d . The defect affine lattice is
thus

{
(m + ξ)M + r z(m) : m ∈ Z

d s.t. a(m) = 1
}

. (6.1)

In the case when ξ ∈ Z
d , it is natural to shift the above point set by −r z(−ξ) so that the

shifted set contains the origin. To unify notation, let us therefore define the field zξ by

zξ (m) =
⎧
⎨

⎩

z(m) − z(−ξ)
(
ξ ∈ Z

d
)

z(m) (ξ /∈ Z
d).

(6.2)

In fact, for our application to the Lorentz gas, it will be convenient to shift the point set by
a more general vector rβ, where β is a fixed bounded continuous function U → R

d ; we
denote the shifted set (for all ξ ∈ R

d ) by

P̃r,u =
{
(m + ξ)M + r

[
zξ (m) − β(u)

] : m ∈ Z
d s.t. a(m) = 1

}
. (6.3)
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As in the case of lattices (4.8), we are interested in the rotated-stretched point set Pt,u =
P̃r,uE(u)�t , which reads explicitly (for r = e−t )

Pt,u = {(m + ξ)ME(u)�t + ([zξ (m) − β(u)
]
E(u)
)
⊥

+e−dt (e1 · [zξ (m) − β(u)
]
E(u)
)
e1 : m ∈ Z

d s.t. a(m) = 1
}

, (6.4)

where ( · )⊥ is the orthogonal projection onto the hyperplane perpendicular to e1.
We map the marked affine lattice (viewed as an element in X ) to a defect lattice (viewed

as an element in M(Rd)) by

σ : X → M(Rd), �(g, ω) �→
∑

y∈Zd g

a( yg−1) δ y+z( yg−1)

(
ξ /∈ Z

d
)

, (6.5)

σ0 : X0 → M(Rd), �(g, ω) �→
∑

y∈Zd g\{0}
a( yg−1) δ y+z( yg−1)

(
ξ ∈ Z

d
)

,

(6.6)

where ω = (a, z). The motivation for this definition is as follows. Define the family of maps
Jt : � → � by

Jt (ω) = Jt (a, z) = (a, z⊥ + e−dt (e1 · z)e1
)

(6.7)

and (for later use)
J∞(ω) = J∞(a, z) = (a, z⊥). (6.8)

Then
σ
(
�
(
(1, ξ)ME(u)�t , Jt (a, [zξ − β(u)]E(u)

)) =
∑

y∈Pt,u

δ y (6.9)

and, for ξ ∈ Z
d ,

σ0
(
�
(
(1, ξ)ME(u)�t , Jt (a, [zξ − β(u)]E(u)

)) =
∑

y∈Pt,u\{0}
δ y. (6.10)

We will first discuss the relevant spherical averages in Xξ , and then show they map to the
above point processes.

Theorem 6.1 Assume η is slog-mixing with asymptotic distribution ρ, and ρ has compact
support. Fix M ∈ G0 and ξ ∈ R

d . Then there exists a set �0 ⊂ � with ν(�0) = 1, such that
for every ω = (a, z) ∈ �0, every a.c. λ and every bounded continuous f : R

d−1×Xξ → R,

lim
t→∞

∫

U

f
(
�
(
(1, ξ)ME(u)�t , Jt (a, [zξ − β(u)])))λ(du) (6.11)

=
∫

Xξ

f
(
�
(
g, J∞(a′, [z′ξ − β(u)]E(u))

))
dλ(u) ×

{
dμ̃ξ ,ρ(g, (a′, z′)) (ξ /∈ Z

d)

dμ̃0,ρ0,ρ(g, (a′, z′))
(
ξ ∈ Z

d
)
,

where ρ0 = δω(−ξ).

Proof Since ρ has compact support and β is bounded,

sup
u∈U

sup
m∈Zd

|e1 · [zξ (m) − β(u)]E(u)| < ∞, (6.12)

and hence Jt (a, [zξ −β(u)]E(u))(m) → J∞(a, [zξ −β(u)]E(u))(m) uniformly in u ∈ U ,
m ∈ Z

d . The claim now follows from Corollary 5.7. �
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The following is the key to translate the above convergence into the setting of point
processes.

Lemma 6.2 The maps σ and σ0 are continuous.

Proof The proof is similar to that of Proposition 2.2; we sketch it in the case of σ .
We need to show that x j → x ∈ X implies that, for every f ∈ Cc(R

d),

∑

y∈Zd g j

a j

(
yg−1

j

)
f
(
y + z j

(
yg−1

j

))
→
∑

y∈Zd g

a
(
yg−1) f

(
y + z
(
yg−1)) . (6.13)

Since f is of compact support, the sums above are finite, and we can rewrite the left hand
side as

∑

y∈Zd g j

a j

(
yg−1

j

)
f
(
y + z j

(
yg−1

j

))
=
∑

m∈Zd

a j (m) f
(
mg j + z j (m)

)
, (6.14)

which is another finite sum. In particular, for allm in the support, we have that a j (m) = a(m)

and |z j (m) − z(m)| < ε once j � j0. The statement (6.13) now follows from continuity of
f . �
For u randomly distributed according to λ, we define the random point processes

�̃ω
t =
∑

y∈Pt,u

δ y, �̃ω
0,t =

∑

y∈Pt,u\{0}
δ y (6.15)

for ξ /∈ Z
d and ξ ∈ Z

d , respectively. If ξ /∈ Z
d , we furthermore set

�̃ = σ
(
�
(
g, J∞(a, zE(u))

))
(6.16)

with (g, (a, z)) distributed according to μ̃ξ ,ρ and u distributed according to λ. That is, �̃ is a
random affine lattice Z

dg distributed according to μ, where each lattice point is removed, or
shifted in the hyperplane V⊥ = {0}×R

d−1, according to the push-forward of the probability
measure λ × ρ on U × {0, 1} × R

d under the map (u, a, z) �→ (a, (zE(u))⊥). If ρ is
rotation-invariant, then this measure is independent of λ. In the case ξ ∈ Z

d , we put

�̃0 = σ0
(
�
(
g, J∞(a, [zξ − β(u)]E(u))

))
(6.17)

with (g, (a, z)) distributed according to μ̃0,ρ0,ρ and u distributed according to λ. This means
that �̃0 is a random lattice Z

dg \ {0} distributed according to μ0, where each lattice point is
removed, or shifted in the hyperplane V⊥ = {0} × R

d−1, according to the push-forward of
the probability measure λ × ρ on U × {0, 1} × R

d under the map

(u, a, z) �→ (a, ([z − z(−ξ) − β(u)]E(u))⊥). (6.18)

This measure depends on λ even if ρ is rotation invariant.
Theorem 6.1 implies via Lemma 6.2 and the continuous mapping theorem the following

convergence in distribution.

Corollary 6.3 Under the conditions of Theorem 6.1, for every ω ∈ �0 and every a.c. λ,

�̃ω
t

d−→ �̃
(
ξ /∈ Z

d
)

, �̃ω
0,t

d−→ �̃0

(
ξ ∈ Z

d
)

. (6.19)
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The following Siegel–Veech type formula allows us to simplify the assumptions on the
test sets for the finite-dimensional distribution. Set

ρ := ρ(1, R
d). (6.20)

Lemma 6.4 For A ∈ B(Rd),

E �̃A = ρ Leb A
(
ξ /∈ Z

d
)

, E �̃0A = ρ Leb A
(
ξ ∈ Z

d
)

. (6.21)

Proof For f ∈ Cc(R
d),

E �̃ f =
∫

Xξ

∑

m∈Zd

a(m) f (mg + ([z(m) − β(u)]E(u))⊥))dλ(u) dμ̃ξ ,ρ(g, (a, z)). (6.22)

By Lemma 3.4, we have then

E �̃ f =
∫

Rd×Rd×U

f (x + ([ y − β(u)]E(u))⊥))Leb(dx)ρ(1, d y)dλ(u), (6.23)

which, after translating x by −([ y − β(u)]E(u))⊥), yields

E �̃ f =
∫

Rd×Rd×U

f (x)Leb(dx)ρ(1, d y)dλ(u) = ρ Leb f. (6.24)

The proof for �̃0 is identical. �
The following is a direct consequence of Corollary 6.3 and Lemma 6.4.

Corollary 6.5 Assume the conditions of Theorem 6.1. Then, for every ω ∈ �0, every a.c. λ,
every n ∈ N and all A1, . . . , An ∈ B(Rd) that are bounded with Leb ∂Ai = 0 for all i ,

(
�̃ω

t A1, . . . , �̃
ω
t An
) d−→ (

�̃A1, . . . , �̃An
) (

ξ /∈ Z
d
)

(6.25)

and (
�̃ω

0,t A1, . . . , �̃
ω
0,t An
) d−→ (

�̃0A1, . . . , �̃0An
) (

ξ ∈ Z
d
)

. (6.26)

Proof Lemma6.4 implies that Leb ∂Ai = 0 implies �̃∂Ai = 0 almost surely and �̃0∂Ai = 0
almost surely, and the claim follows from [13, Theorem 16.16]. �

7 Free path lengths in the Lorentz gas

For a given point set P ⊂ R
d , center an open ball Bd

r + y of radius r at each of the points y
in P . The Lorentz gas describes the dynamics of point particle in this array of balls, where
the particle moves with unit velocity until it hits a ball, where it is scattered according to a
given scattering map. The configuration space for the dynamics is thusKr = R

d \ (Bd
r +P).

Given the initial position q ∈ Kr and velocity v ∈ Sd−1
1 , the free path length is defined as

the travel distance until the next collision,

τ(q, v; r) := inf {t > 0 : q + tv /∈ Kr } . (7.1)

The distribution of the free path length is well understood for random [2], periodic [1,5,17]
and quasiperiodic [19,20] scatterer configurations.Wewill here consider the periodic Lorentz
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gas with random defects introduced in the previous section, where the scatterers are placed
at the defect lattice

Pr =
{
mM + r z(m) : m ∈ Z

d s.t. a(m) = 1
}

. (7.2)

Note that the papers [4,23] discuss the convergence of a defect periodic Lorentz gas to
a random flight process governed by the linear Boltzmann equation in the limit when the
removal probability of a scatterer tends to one. In this case the free path length distribution
is exponential, whereas for a fixed removal probability < 1 the path length distribution has
a power-law tail; cf. (7.13).

As in [17], we will consider more general initial conditions, which for instance permit
us to launch a particle from the boundary of a scatterer (which is moving as r → 0). Let
β : Sd−1

1 → R
d be a continuous function, and consider the initial condition q + rβ(v). If

q ∈ Z
dM and the initial condition is thus very near (within distance O(r)) to a scatterer, we

will avoid initial conditions inside the scatterer, or those that immediately hit the scatterer,
by assuming that β is such that the ray β(v) + R>0v lies completely outside Bd

1 , for each
v ∈ Sd−1

1 .
The following theorem proves the existence of the free path length distribution for (a)

random initial data (q + rβ(v), v) for q /∈ Z
dM fixed, and v random with law λ, and (b)

random initial data (q + rβ(v) + r z(qM−1), v) for q ∈ Z
dM fixed, and v random with law

λ.

Theorem 7.1 Assume η is slog-mixing with asymptotic distribution ρ, and ρ has com-
pact support. Fix M ∈ G0 and q ∈ R

d . There exist continuous, non-increasing functions
Fs : R�0 → R with Fs(0) = 1 (s ∈ Z�0) and a set �0 ⊂ � with ν(�0) = 1, such that the
following hold for every T � 0, every (a, z) ∈ �0 and every absolutely continuous Borel
probability measure λ on Sd−1

1 :

(i) If q ∈ R
d \ Q

dM, then

lim
r→0

λ
{
v ∈ Sd−1

1 : rd−1τ (q + rβ(v), v; r) � T
}

= F0(T ). (7.3)

(ii) If q = s−1mM with s ∈ Z�2, m ∈ Z
d , gcd(m, s) = 1, then

lim
r→0

λ
{
v ∈ Sd−1

1 : rd−1τ (q + rβ(v), v; r) � T
}

= Fs(T ). (7.4)

(iii) If q ∈ Z
dM, then

lim
r→0

λ
{
v ∈ Sd−1

1 : rd−1τ
(
q + rβ(v) + r z

(
qM−1) , v; r) � T

}
= F1(T ). (7.5)

Proof The proof follows from Corollary 6.5 in the case of one-dimensional distributions
(n = 1) by the same arguments as in [17]. This proves the existence of the limits with

F0(T ) = P
(
�̃Z(T, 1) = 0

)
with ξ /∈ Q

d , (7.6)

Fs(T ) = P
(
�̃Z(T, 1) = 0

)
with ξ = s−1m, (7.7)

F1(T ) = P
(
�̃0Z(T, 1) = 0

)
with ξ ∈ Z

d , (7.8)

where
Z(T, R) := {(x1, . . . , xd) ∈ R

d : 0 < x1 < T, ‖(x2, . . . , xd)‖ < R
}
. (7.9)

Note that the limit process �̃ is independent of the choice of ξ when ξ /∈ Q
d , and only depends

on the denominator of ξ when ξ ∈ Q
d \ Z

d ; cf. [17] for a detailed discussion. Furthermore
�̃0 is independent of ξ ∈ Z

d . �
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Let rmax be the infimum over the radii of balls centered at the origin that contain the
support of ρ(1, · ) (which we have assumed to be compact). Then the maximal distance
between a point in the random affine lattice 
 and its displacement in �̃ is rmax. Denote by
Fs the corresponding path length distribution

Fs(T ) = P
(

Z(T, 1) = 0

)
(s �= 1), F1(T ) = P

(

0Z(T, 1) = 0

)
. (7.10)

Lemma 7.2 For T � 0,
Fs(T ) � Fs

(
(1 + rmax)

d−1T
)
. (7.11)

Proof We have

P
(
�̃Z(T, 1) = 0

)
� P
(

Z(T, 1 + rmax) = 0

) = P
(

Z((1 + rmax)

d−1T, 1) = 0
)
,

(7.12)

where the last equality follows from the G0-invariance of 
. �
This lemma allows us to obtain lower bounds for the tails of Fs(T ) in terms of the free

path length asymptotics derived in [18]. In particular, Theorem 1.13 in that paper implies the
power-law lower bound

F0(T ) �
π

d−1
2 (1 + rmax)

1−d

2dd �
( d+3

2

)
ζ(d)

T−1 + O
(
T−1− 2

d
)
. (7.13)

Note that this bound becomes ineffective in the limit of large rmax. The bound is also consistent
with the exponential distribution in the limit of removal probability → 1 discussed in [4,23],
if the free path length is measured in units of the mean free path length, which diverges as
the removal probability tends to one.
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