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Abstract:
The mechanisms leading language conventions to be socially accepted and
adopted by a group are object of an intense debate. The issue can be of
course addressed by different points of view, and recently also complex sys-
tem science has started to contribute, mainly by means of computer simula-
tions and analytical approaches. In this paper we study a very simple multi
agent model of convention spreading and investigate some of the crucial as-
pects of its dynamics, resorting, whenever possible, to quantitative analytic
methods. In particular, the model is able to account for the emergence of
global consensus out of local (pairwise) interactions. In this regard, a key
question concerns the role of the size of the population. We investigate in
detail how the cognitive efforts of the agents in terms of memory and the
convergence time scale with the number of agents. We also point out the ex-
istence of an hidden timescale ruling a fundamental aspect of the dynamics,
and we discuss the nature of the convergence process.
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1 Introduction

How do linguistic conventions come to be accepted at a population level?
What is the role of the population size as for the time needed to reach the
global agreement? How and why does a specific word manage to impose itself
defeating all the competitors? These are only few of the topic questions that
one faces when dealing with the problem of the development and evolution
of language. And they can be of course addressed by man different point of
views, ranging from psychology to sociology, from evolutionary biology to
artificial intelligence. Recently, however, there has been a growing effort to
tackle them resorting to agent based models and mathematical approaches
(cfr [1] for a review). The general issue has been often restricted, in this
context, to that of the emergence of a shared vocabulary, and also in this
paper we shall be focused on this problem.

In particular, we are interested here in the dynamics leading conven-
tions to global sharing in all those cases in which semantics does not play
any specific role. A real world example of such situations is given by the
phenomenon of e-mail spamming. When it was at its beginning, many
names had spontaneously emerged to indicate undesired mails, like, for in-
stance, ”junk mail” or ”spam”. After a while, however, and without any
apparent reason, ”spam” became universally accepted and now there is not
actual competition and almost everybody talks about ”spam” while other
synonyms have almost been forgotten.

The more general issue of the emergence of a common vocabulary has
been addressed, in the context of complex systems science, resorting to dif-
ferent models. Among these, a first distinction concerns evolutionary and
cultural explanations. The evolutionary approach [2], to which belongs also
the well known evolutionary language game [3], is based on the assumption
that successful communicators, enjoying a selective advantage, are more
likely to reproduce than worse communicators. Moreover, since communi-
cation strategies are innate, if one of them is better than the others then in
an evolutionary time-span it will displace all the rivals, becoming the unique
strategy of the population. The term strategy acquires a precise meaning in
the context of each particular model. For instance, it can be a strategy for
acquiring the lexicon of a language [2, 4, 5], or it can simply coincide with
the lexicon of the parents [3], but other possibilities exist [1].

In this paper we discuss a model, first proposed in [6], that belongs to
the cultural family [7, 8, 9]. Here, good strategies do not provide higher
reproductive success, but only better communication abilities. Agents can
then select better strategies exploiting cultural choice and direct feedback
in communications. Moreover, innovations can be introduced due to the
inventing ability of the agents. Thus, global coordination emerges over cul-
tural timescales, and language is seen as an evolving and self-organized sys-
tem [10]. Said in different words, while in the evolutionary approach cultural
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transmission follows a vertical, ’genetic’, line, in the cultural one it is hori-
zontal and involves peer individuals [11].

A further distinction among different models concerns the adopted mech-
anisms of social learning describing how stable dispositions are transmitted
among individuals [12]. The two main approaches are the so called obser-
vational learning model and the operant conditioning model [13]. In the
first, often associated with the evolutionary approach [2, 4, 5, 3], observa-
tion is the main ingredient of learning and statistical sampling of observed
behaviors determines their acquisition. The second emphasizes the inferen-
tial nature of communication, in which the stimulus and the response to a
stimulus play a central role. In our work, we adopt the operant conditioning
approach, as in [7, 8, 9], according to which language learning, aiming at
communicating meaning, is mainly functional.

In this paper we shall discuss a recently introduced model [6], inspired
by the well known Naming Game [8], able to account for the emergence
of a shared set of conventions in a population of agents. Individuals can
only perform pairwise interactions, and no central control is needed for the
emergence of a globally accepted common lexicon.

A crucial aspect of the proposed model is its simplicity. Usually, in fact,
when defining a multi-agent model, the choice is between endowing agents
with simple properties, so that one can hope to fully understand what hap-
pens in simulations, or with more complicated and realistic structures that
yet risk to confuse experiments outputs. We choose to follow the first possi-
bility since we are more interested in the global behavior of the population.
In this perspective we do not seek answers to specific issues in the develop-
ment of language, but rather we aim at analyzing deeply basic models that
can constitute valuable starting points for more sophisticated investigations.
Nevertheless, as we shall see, also extremely transparent agents and inter-
action rules can give rise to very complex and rich global behaviors and the
study of simple models can help to shed light on general properties - a well
known lesson in statistical physics. Finally, it is worth stressing that, very
often, cultural frameworks lack of quantitative investigations, contrarily to
what happens in the evolutionary approaches. In this paper, for instance,
we shall discuss in great details how the main features of the process leading
the population to a final convergence state scale with the population size,
while in general other models concentrate on studying very small popula-
tions, even composed of only two players [14].

The paper is organized as follows. In section 2 we introduce the model
and discuss the basic features of its dynamics. In section 3 we investigate
how the main features of the process leading to convergence scale with the
populations size. Section 4 is devoted to the analysis of an hidden timescale
governing the transition between the initial phase with almost no commu-
nication to the final state of nearly perfect agreement. In section 5 we show
that convergence always takes place. Finally conclusions are drawn in sec-
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tion 6.

2 The model

Let us consider a population of N agents which perform pairwise games in
order to agree on the name to assign to a single object. Each agent is char-
acterized by its inventory or memory, i.e. a list of name-object associations
that is empty at the beginning of the process and evolves dynamically dur-
ing time. At each time step, two agents are randomly selected, one to play
as speaker, the other one as hearer, and interact according to the following
rules:

• The speaker has to transmit a name to the hearer. If its inventory is
empty, it invents a new word, otherwise it selects randomly one of the
names it knows;

• If the hearer has the uttered name in its inventory, the game is a
success, and both agents delete all their words but the winning one;

• If the hearer does not know the uttered word, the game is a failure,
and the hearer inserts the word in its inventory, i.e. it learns the new
name.

A remark is now in order. The presence of a single object follows by the
rather strong assumption of preventing homonymy, but does not imply any
restriction on the environment in which the agents are ideally or (eventually
physically) placed. In fact, once it is forbidden that the same name refers to
more than one object, all different objects become independent, and one can
work with only one of them without any loss of generality. Moreover, while
the absence of homonymy allows for a strong reduction in the complexity
of the model, it does not seem so drastic when thinking of artificial agents
that assign randomly extracted real numbers to new objects.

It is also interesting to note that the problem of homonymy has been
studied in great detail in the context of evolutionary game theory and [15]
have shown that languages with homonymy are evolutionary unstable. How-
ever it is obvious that homonymy is an essential aspect of human languages,
while synonymy seems less relevant. The two authors solve this apparent
paradox noting that if we think of ”words in a context” homonymy almost
disappears while synonymy acquires a much grater role. This observation
fits very well also with our inferential model of learning according to which
we assume that agents are placed in a common environment and they are
able to point referents. So, after a failure, the speaker is able to point the
named object (or referent) to the hearer which in its turn can assign the
new name to it.
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Figure 1: Basic global dynamics: The total number of words in the system,

Nw(t) (or total memory used), the number of different words, Nd(t), and the suc-

cess rate, S(t), are plotted as a function of time. The final convergence state is

characterized by the presence of the same unique word in the inventories of agents.

Thus, at the end of the process, we have Nw(t) = N and Nd(t) = 1, while the

probability of a success is equal to 1 (S(t) = 1). The curves have been obtained

averaging over 300 simulation runs for a population of 2 × 103 agents.

2.1 Convergence dynamics

To understand the behavior of the system, we report in Figure 1 three
curves obtained averaging several runs of the process in a population of
N = 2×103 agents. They represent the evolution in time of the total number
of words present in the system Nw(t), which quantifies the total amount of
memory used by the process, of the number of different words, Nd(t), and of
the success rate, S(t), defined as the probability of a successful interaction
between two agents at time t. The first thing to be noted is that the system
reaches a final convergence state in which all agents have the same unique
word, i.e. a final proto-communication system has been established. It is
thus interesting to proceed with a more detailed analysis of how this final
state of global communication emerges from purely binary interactions.

The process starts with a trivial phase in which the inventories are empty,
so that the invention process is dominating and N/2 different words are
created on average. This rapid transient is followed by a longer period
of time in which most interactions are unsuccessful (S(t) ≃ 0), and the
sizes of inventories keep growing. However the amount of memory used
does not increase indefinitely, since correlations are progressively built up
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Figure 2: Scaling with the population size N : In the upper graph the

scaling of the peak and convergence time, tmax and tconv, is reported, along with

their difference, tdiff . All curves scale with the power law N 1.5. The lower curve

shows that the maximum number of words (peak height, Nmax
w = Nw(tmax)) obeys

the same power law scaling.

among inventories and increase the probability of successful interactions. In
particular, the Nw(t) curve exhibits a well identified peak, whose height and
occurrence time are important parameters to describe the process. Slightly
after the peak, there is a quite abrupt transition from a disordered state in
which communication among agents is difficult to a nearly optimal situation,
which is captured by a jump of the success rate curve. The process then ends
when the convergence state (Nd(t) = 1, Nw(t) = N) is reached. Finally,
it is worth noting that the developed proto-communication system is not
only effective (each agent understands all the others), but also efficient (no
memory is wasted in the final state).

3 The role of the system size - scaling relations

Now that we have a qualitative picture of the dynamics leading the system
to convergence, it is natural investigating the role played by the system size
N . In particular, two fundamental aspects depend on N . The first is the
time needed by the population to reach the final state, that we shall call the
convergence time tconv. The second concerns the cognitive effort in terms of
memory required to each agent by the dynamics. This reaches its maximum
in correspondence of the peak of the Nw(t) curve. In Figure 2 it is shown
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the scaling behavior of the convergence time tconv, and the time and height
of the peak of Nw(t), namely tmax and Nmax

w
.
= Nw(tmax). The difference

time (tconv − tmax) is also plotted. It turns out that all these quantities
follow power law behaviors: tmax ∼ Nα, tconv ∼ Nβ, Nmax

w ∼ Nγ and
tdiff = (tconv − tmax) ∼ N δ, with exponents α ≈ β ≈ γ ≈ δ ≈ 1.5.

The values for α and γ can be understood through simple analytical
arguments. Indeed, assume that, when the total number of words is close
to the maximum, each agent has on average cN a words, so that it holds
α = a + 1. If we assume also that the distribution of different words in
agents inventories is uniform, we have that the probability for the speaker
to play a given word is 1/(cN a), while the probability that the hearer knows
that word is 2cNa/N (where N/2 is the number of different words present
in the system). The equation for the evolution of the number of words then
reads:

dNw(t)

dt
∝ 1

cNa

(

1 − 2cNa

N

)

− 1

cNa

2cNa

N
2cNa (1)

where the first term is related to unsuccessful interactions (which increase
Nw by one unit), while the second one to successful ones (which decrease Nw

by 2cNa). At the maximum dNw(tmax)
dt = 0, so that, in the thermodynamic

limit N → ∞, the only possible value for the exponent is a = 1/2 which
implies α = 3/2 in perfect agreement with data from simulations.

For the exponent γ the procedure is analogous, but we have to use the
linear behavior of the success rate and the relation a = 1/2 we have just
obtained. The equation for Nw(t) now can be written as:

dNw(t)

dt
∝ 1

cN1/2

(

1 − ct

N2

)

− 1

cN1/2

ct

N2
2cN1/2 . (2)

If we impose dNw(t)
dt = 0, we find that the time of the maximum has to scale

with the right exponent γ = 3/2 in the thermodynamic limit.
Before concluding this section, it is worth stressing that the possibility

of resorting both to the massive numerical simulations needed to recover
the right exponents and to the analytical results of eq. (1) and (2), is a
direct consequence of the simplicity of the interaction rules defined in our
model. It is also one of the most important contributions of our work,
since, as we mentioned above, this kind of analysis was, as far as we know,
completely lacking from models which adopt our point of view to investigate
the spreading of conventions.
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Figure 3: Hidden timescale in the disorder/order transition. a)(Top)

The success rate, S(t), curves do not collapse when the time is rescaled as t →

t/tS(t)=0.5−1, where tS(t)=0.5 is the time in which the considered curve reaches the

value 0.5. In particular, curves relative to larger populations present a faster jump

towards the perfect communication regime (S(t) = 1). b)(Bottom) This is due

to the fact that the transition happens on a timescale O(N 5/4). In Figure, a time

rescaling of the form t → (t−tS(t)=0.5)/t
5/6
S(t)=0.5 [equivalent to t → (t−N 3/2)/N5/4]

gives rise to a good collapse of the different curves.

4 The disorder/order transition

Now that we know that the characteristic time required by the system to
reach convergence scales as N 1.5 we would expect a transformation of the
form the t → t/N 3/2 to make collapse the curves of the total quantities, such
as S(t) or Nw(t), relative to systems of different sizes. However, this is not
true, as it is clear from Figure 3a, where the time has been rescaled following
a transformation of the time t → t/tS(t)=0.5 − 1, where tS(t)=0.5 ∼ N1.5 is
the time in which the considered curve reaches the value 0.5 1 In particular,
the rescaled curves become steeper and steeper as the population size grows.
This means that the disorder/order transition from the initial situation in
which almost no communication exists (S(t) ≃ 0) and the final one in which
most interactions are successful (S(t) ≃ 1) happens on a different timescale,

1This choice has been made in order to assure that all the different curves cross at the

origin of the axis of the rescaled curve, thus preventing them from being slightly scattered

on the graph.
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Figure 4: Microscopic analysis: Top) Distribution p(k) of inventory sizes k.

Close to convergence the distribution is well described by a power law p(k) ∼ k−7/6.

Bottom) Distribution n(R) of words of rank R. The most popular word has rank

R = 1, the second R = 2, etc. The distribution follows a power law behavior

n(R) ∼ N−ρ with an exponent that varies in time. Close to the disorder/order

transition the most popular word breaks the symmetry and leaves the power law

distribution, which, however, continues to describe well the behavior of less common

words. In both cases data refer to a population size of N = 104 agents, for which

tmax = 6.2 × 105 and tconv = 1.3 × 106 time-steps.

which disappears as the population size diverges (N → ∞).
Indeed, the hidden timescale governing the transition turns out to be

O(N5/4), as it is clear from Figure 3b where different curves collapse as the

time has been rescaled with a transformation equivalent to t → t−N3/2

N5/4
.

To understand the origin of this new temporal scale, we must look closer
at the process leading to convergence. In particular it is important investi-
gating the microscopic properties of both the agents and the words. First
of all it is relevant looking at the distribution, p(k), of the agents inventory
sizes k. In particular, as it is shown in Figure 4, just before the transition
this distribution follows a power law behavior, so that we can write:

p(k) ∼ k−σf(k/
√

N) (3)

where f(x) = 1 for x << 1 and f(x) = 0 for x >> 1. Numerically, it turns
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out that σ ≈ 7/6, as it is shown in Figure 4, and this value is irrespective
of the system size (data not shown).

The process leading the population to agree on the same unique conven-
tion consists in negotiations among the agents and competition among the
words. Indeed, only one convention will survive in the final state, and an
interesting question concerns the mechanisms determining its victory. At
each time step one can ask which is the most popular word, the second most
common and so on. In Figure 4 it is plotted the rank distribution, n(R),
describing which is the fraction of agents possessing each word of rank R.
We find that also in this case the histograms are well fitted by a power law
distribution. Interestingly, however, close to the transition the most popular
word breaks the symmetry, abandons the distribution which continue to de-
scribe well the remaining words, and prepares itself to become dominating.
Thus, we can write:

n(R) = n(1)δR,1 +
Nw/N − n(1)

(1 − ρ)((N/2)1−ρ − 21−ρ)
R−ρf(

R

N/2
), (4)

where δ is the Kronecker delta function (δa,b = 1 iff a = b and δa,b =
0 if a 6= b) and the normalization factors are derived imposing that that
∫

∞

1 n(R)dR = Nw/N2.
On the other hand from equation (3) one gets, by a simple integration,

the relation Nw/N ∼ N1−σ/2 which, substituted into eq. (4) gives

n(R)|R>1 ∼ 1

Nσ/2−ρ
R−ρf(

R

N/2
). (5)

It follows that n(R)|R>1 → 0 as N → ∞, so that, in the thermodynamic
limit n(1), i.e. the number of players with the most popular word, is a finite
fraction of the whole population.

Now, in order to understand better what happens at the transition, we
can profitably map the agents in the nodes of a network. Then, we connect
two agents each time that they have a word in common, so that multiple
links are allowed. In the network, a word is represented by a fully connected
subgraph, i.e. by a clique, and the final coherent state corresponds to a
fully connected network with all pairs connected by a only one link. When
two players interact, a failure determines the propagation of a word, while a
success can result in the elimination of a certain number of words competing
with the one used. In network view, this translates into a clique that grows
when one of its nodes is represented by a speaker that takes part in a failure,

2We use integrals instead of discrete sums, an approximation valid in the limit of large

systems.
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and is diminished when one (or two) of its nodes are involved in a successful
interaction with a competing word.

If we make the hypothesis that, when N is large, just before the transition
all the agents have the word that will dominate, the problem of convergence
reduces to the study of the rate at which competing words disappear. Said
in different words, the crucial information is how the number of deleted links
in the network, Md, scales with N . It holds:

Md =
Nw

N

∫

∞

2
n2(R)NdR ∼ N 3− 3

2
σ (6)

where Nw
N is the average number of words known by each agents (i.e. the

average number of cliques entered by a node), n(R) is the probability of
having a word of rank R (i.e. the probability for a given clique to be involved
in the deletion process) , and n(R)N is the number of agents that have
that word (i.e. the size of the subgraph corresponding to the word). The
integration starts from the second most popular word that is first one that
can be eliminated according to our assumption.

Inserting the value for σ obtained from simulations, σ ≃ 7/6, we obtain
that Md ∼ N5/4. Thus, as we expected, we find that, for large systems,
Md/N

3/2 → 0, and this explains the greater slope, on the system timescale
N3/2, of the success rate curves for large populations (Figure 3).

5 Convergence properties

So far we have looked at all the timescales involved in the process leading
the population to the final agreement state. Yet, we have not investigated
whether this convergence state is always reached. Actually, this is the case,
and trivial considerations allow to clarify this point. First of all, it must be
noticed that, according to the interaction rules of the agents, the agreement
condition constitutes the only possible absorbing state of our model. The
proof that convergence is always reached is then straightforward. Indeed,
from any possible state there is always a non-zero probability to reach an
absorbing state in, for instance, 2(N − 1) interactions. For example, a
possible sequence is as follows. A given agent speaks twice with all the
other (N − 1) agents using always the same word A. After these 2(N − 1)
interactions all the agents have only the word A. Denoting with p the
probability of the sequence of 2(N−1) steps, the probability that the system
has not reached an absorbing state after 2(N − 1) iterations is smaller or
equal to (1 − p). Therefore, iterating this procedure, the probability that,
starting from any state, the system has not reached an absorbing state after
2k(N − 1) iterations, is smaller than (1 − p)k which vanishes exponentially
with k.
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Figure 5: Overlap functional O(t). In Figure it is shown the evolution in time

of the overlap functional averaged on different runs (for a population of N = 103

agents). Curves for the success rate S(t) and total number of words Nw(t) are

included for reference. From simulations we have that holds 〈O(t + 1)〉 > 〈O(t)〉,

which, along with the stronger 〈O(t+1)〉 > O(t) valid for almost all configurations,

indicate that the system will reach the final state of convergence where O(t) = 1.

Another perspective to address the problem of convergence consists in
monitoring the lexical coherence of the system. To this purpose, we intro-
duce the overlap functional O:

O =
2

N(N − 1)

∑

i>j

|ai ∩ aj|
kikj

(7)

where ai is the ith agent’s inventory, whose size is ki, and |ai ∩ aj | is the
number of words in common between ai and aj. The overlap functional is a
measure of the lexical coherence in the system and it is bounded, O(t) ≤ 1.
A the beginning of the process it is equal to zero, O(t = 0) = 0, while at
convergence it reaches its maximum, O(t = tconv) = 1.

From simulations it turns out that, averaged over several runs, the func-
tional always grows, i.e. 〈O(t + 1)〉 > 〈O(t)〉 (see Figure 5). Moreover,
looking at the single realization, this function grows almost always, i.e.
〈O(t + 1)〉 > O(t). The monotonicity of the overlap, combined with the
fact that it is bounded to be not larger than 1, strongly suggests that the
system will converge. Contrarily to the previous absorbing-state argument,
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this is not a rigorous proof of the convergence, since we lack of a rigorous
proof of what we observe, nonetheless the overlap approach allows to gain a
deeper insight into the way in which the final state is reached.

6 Conclusion

In this paper we have discussed a very simple model of convention spreading.
Out of transparent pairwise interactions, a population is able to converge
on the name to assign to an object. We have then investigated, both with
simulations and analytical approaches, the role of the system size, N , on the
convergence dynamics. In particular we have focused on this scaling with
N of the amount memory required to single agents and the time needed
to reach the final agreement state. Having identified the system timescale,
which is of order O(N 3/2), we have also identified a different timescale,
of order O(N 5/4), on which the transition between the initial situation (in
which there is approximately no communication) and the final one (in which
there is an almost perfect agreement) takes place. Finally, we have shown,
both with a rigorous simple proof and with a more intuitive argument, that
the convergence state is always reached by the system.
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