41 research outputs found

    Mechanisms of Horizontal Gene Transfer

    Get PDF
    Horizontal gene transfer plays important roles in the evolution of S. aureus, and indeed, a variety of virulence factors and antibiotic resistance genes are embedded in a series of mobile genetic elements. In this chapter, we review the mechanisms of horizontal gene transfer, including recent findings on the natural genetic competence. Then, we consider the transfer of two important antibiotic resistance genes: the methicillin resistance gene, mecA (in Staphylococcal Cassette Chromosome) and the linezolid resistance gene, cfr (in plasmid). In either case, distinct mechanisms driving the gene dissemination support the prominent evolutionary ability of this important human pathogen

    Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains

    Get PDF
    8 p.-4 fig.Background: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. Methodology/Principal Findings: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complementmediated immunity to S. pneumoniae. Conclusions/Significance: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.This work was supported by grants SAF2009-10824 from Dirección General de Investigación Científica y Técnica, MPY 1350/10 from ISCIII and an unrestricted educational grant from Tedec-Meiji Farma S. A. (Madrid, Spain).Peer reviewe

    β-Lactam Effects on Mixed Cultures of Common Respiratory Isolates as an Approach to Treatment Effects on Nasopharyngeal Bacterial Population Dynamics

    Get PDF
    BACKGROUND: Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae are bacteria present in the nasopharynx as part of normal flora. The ecological equilibrium in the nasopharynx can be disrupted by the presence of antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: A computerized two-compartment pharmacodynamic model was used to explore beta-lactam effects on the evolution over time of a bacterial load containing common pharyngeal isolates by simulating free serum concentrations obtained with amoxicillin (AMX) 875 mg tid, amoxicillin/clavulanic acid (AMC) 875/125 mg tid and cefditoren (CDN) 400 mg bid regimens over 24 h. Strains and MICs (microg/ml) of AMX, AMC and CDN were: S. pyogenes (0.03, 0.03 and 0.015), S. pneumoniae (2, 2 and 0.25), a beta-lactamase positive H. influenzae (BL(+); >16, 2 and 0.06) and a beta-lactamase positive AMC-resistant H. influenzae (BLPACR, >16, 8 and 0.06). Mixture of identical 1:1:1:1 volumes of each bacterial suspension were prepared yielding an inocula of approximately 4 x 10(6) cfu/ml. Antibiotic concentrations were measured both in bacterial and in bacteria-free antibiotic simulations. beta-lactamase production decreased AMX concentrations and fT(>MIC) against S. pneumoniae (from 43.2% to 17.7%) or S. pyogenes (from 99.9% to 24.9%), and eradication was precluded. The presence of clavulanic acid countered this effect of co-pathogenicity, and S. pyogenes (but not BL(+) and S. pneumoniae) was eradicated. Resistance of CDN to TEM beta-lactamase avoided this co-pathogenicity effect, and CDN eradicated S. pyogenes and H. influenzae strains (fT(>MIC) >58%), and reduced in 94% S. pneumoniae counts (fT(>MIC) approximately 25%). CONCLUSIONS/SIGNIFICANCE: Co-pathogenicity seems to be gradual since clavulanic acid countered this effect for strains very susceptible to AMX as S. pyogenes but not for strains with AMX MIC values in the limit of susceptibility as S. pneumoniae. There is a potential therapeutic advantage for beta-lactamase resistant cephalosporins with high activity against streptococci

    High Protein Binding and Cidal Activity against Penicillin-Resistant S. pneumoniae: A Cefditoren In Vitro Pharmacodynamic Simulation

    Get PDF
    BACKGROUND: Although protein binding is a reversible phenomenon, it is assumed that antibacterial activity is exclusively exerted by the free (unbound) fraction of antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Activity of cefditoren, a highly protein bound 3(rd) generation cephalosporin, over 24h after an oral 400 mg cefditoren-pivoxil bid regimen was studied against six S. pneumoniae strains (penicillin/cefditoren MICs; microg/ml): S1 (0.12/0.25), S2 (0.25/0.25), S3 and S4 (0.5/0.5), S5 (1/0.5) and S6 (4/0.5). A computerized pharmacodynamic simulation with media consisting in 75% human serum and 25% broth (mean albumin concentrations = 4.85+/-0.12 g/dL) was performed. Protein binding was measured. The cumulative percentage of a 24h-period that drug concentrations exceeded the MIC for total (T > MIC) and unbound concentrations (fT > MIC), expressed as percentage of the dosing interval, were determined. Protein binding was 87.1%. Bactericidal activity (> or = 99.9% initial inocula reduction) was obtained against strains S1 and S2 at 24h (T > MIC = 77.6%, fT > MIC = 23.7%). With T > MIC of 61.6% (fT > MIC = 1.7%), reductions against S3 and S4 ranged from 90% to 97% at 12h and 24h; against S5, reduction was 45.1% at 12h and up to 85.0% at 24h; and against S6, reduction was 91.8% at 12h, but due to regrowth of 52.9% at 24h. Cefditoren physiological concentrations exerted antibacterial activity against strains exhibiting MICs of 0.25 and 0.5 microg/ml under protein binding conditions similar to those in humans. CONCLUSIONS/SIGNIFICANCE: The results of this study suggest that, from the pharmacodynamic perspective, the presence of physiological albumin concentrations may not preclude antipneumococcal activity of highly bound cephalosporins as cefditoren

    Enhanced In Vivo Activity of Cefditoren in Pre-Immunized Mice against Penicillin-Resistant S. pneumoniae (Serotypes 6B, 19F and 23F) in a Sepsis Model

    Get PDF
    Background Specific antibodies are likely to be present before S. pneumoniae infection. We explored cefditoren (CDN) total and free values of serum concentrations exceeding the MIC (t>MIC) related to efficacy in a mice sepsis model, and the effect of specific gammaglobulins on in-vitro phagocytosis and in-vivo efficacy. Methodology/Principal Findings We used three pneumococcal isolates (serotype, MIC of CDN): Strain 1 (6B, 1 µg/ml), Strain 2 (19F, 2 µg/ml) and Strain 3 (23F, 4 µg/ml). Hyperimmune serum (HS) was obtained from mice immunized with heat-inactivated strains. In-vitro, phagocytosis by HS diluted 1/10 in presence/absence of sub-inhibitory concentrations was measured by flow cytometry including fluorescent bacteria and a neutrophil cell line. In-vivo dose-ranging experiments with HS (dilutions 1/2–1/16) and CDN (6.25 mg/kg–100 mg/kg tid for 48 h) were performed to determine the minimal protective dilution/dose (highest survival) and the non-protective highest dilution/dose (highest mortality: HS-np dilution and CDN-np dose) over 7 days. Efficacy of CDN-np in animals pre-immunized with HS-np (combined strategy) was explored and blood bacterial clearance determined. The CDN measured protein binding was 86.9%. In-vitro, CDN significantly increased phagocytosis (vs. HS 1/10). In non pre-immunized animals, t>MIC values for CDN of ≈35% (total) and ≈19% (free) were associated with 100% survival. Significant differences in survival were found between HS-np alone (≤20%) or CDN-np alone (≤20%) vs. the combined strategy (90%, 60% and 60% for Stains 1, 2 and 3), with t>MIC (total/free) of 22.8%/14.3%, 26.8%/16.0%, and 22.4%/12.7% for Strains 1, 2 and 3, respectively. Prior to the second dose (8 h), median bacterial counts were significantly lower in animals surviving vs. dead at day 7. Conclusions/Significance In mice (CDN protein binding similar to humans) total t>MIC values of ≈35% (≈19% free) were efficacious, with a decrease in the required values in pre-immunized animals. This reinforces that immunoprotection to overcome resistance may provide lifesaving strategies.This study was supported by an unrestricted grant from Tedec-Meiji Farma S.A., Madrid, Spain. Tedec-Meiji Farma S.A. had a role in providing reagents, materials and analysis toolsPeer reviewe

    A new biocompatible and antibacterial phosphate free glass-ceramic for medical applications

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License.In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projectMAT2012-38645, and by CSIC project ref. nu 201360E012. B. Cabal acknowledges financial support from JAE-Doc program (CSIC, cofounded by FSE).Peer Reviewe

    Methodology for the Study of Horizontal Gene Transfer in Staphylococcus aureus

    Get PDF
    One important feature of the major opportunistic human pathogen Staphylococcus aureus is its extraordinary ability to rapidly acquire resistance to antibiotics. Genomic studies reveal that S. aureus carries many virulence and resistance genes located in mobile genetic elements, suggesting that horizontal gene transfer (HGT) plays a critical role in S. aureus evolution. However, a full and detailed description of the methodology used to study HGT in S. aureus is still lacking, especially regarding natural transformation, which has been recently reported in this bacterium. This work describes three protocols that are useful for the in vitro investigation of HGT in S. aureus: conjugation, phage transduction, and natural transformation. To this aim, the cfr gene (chloramphenicol/florfenicol resistance), which confers the Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A (PhLOPSA)-resistance phenotype, was used. Understanding the mechanisms through which S. aureus transfers genetic materials to other strains is essential to comprehending the rapid acquisition of resistance and helps to clarify the modes of dissemination reported in surveillance programs or to further predict the spreading mode in the future.Takeda Science Foundation, Pfizer Academic Contribution and JSPS Postdoctoral Fellowship for Foreign Researchers (FC)1.184 JCR (2017) Q2, 31/64 Multidisciplinary sciencesUE

    Prevalence of pSCFS7-like vectors among cfr-positive staphylococcal population in Spain

    Get PDF
    Sin financiación4.615 JCR (2018) Q1, 15/89 Infectious Diseases, 29/133 Microbiology, 32/267 Pharmacology & Pharmacy1.531 SJR (2018) Q1, 55/298 Infectious Diseases, 22/127 Microbiology (medical), 30/268 Pharmacology (medical), 251/2844 Medicine (miscellaneous)No data IDR 2018UE
    corecore