383 research outputs found

    Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration

    Get PDF
    Cardiovascular diseases, including myocardial infarction (MI), represent the main worldwide cause of mortality and morbidity. In this scenario, to contrast the irreversible damages following MI, cardiac regeneration has emerged as a novel and promising solution for in situ cellular regeneration, preserving cell behavior and tissue cytoarchitecture. Among the huge variety of natural, synthetic, and hybrid compounds used for tissue regeneration, alginate emerged as a good candidate for cellular preservation and delivery, becoming one of the first biomaterial tested in pre-clinical research and clinical trials concerning cardiovascular diseases. Although promising results have been obtained, recellularization and revascularization of the infarcted area present still major limitations. Therefore, the demand is rising for alginate functionalization and its combination with molecules, factors, and drugs capable to boost the regenerative potential of the cardiac tissue. The focus of this review is to elucidate the promising properties of alginate and to highlight its benefits in clinical trials in relation to cardiac regeneration. The definition of hydrogels, the alginate characteristics, and recent biomedical applications are herewith described. Afterward, the review examines in depth the ongoing developments to refine the material relevance in cardiac recovery and regeneration after MI and presents current clinical trials based on alginate

    Increased Functional Connectivity in the Default Mode Network in Mild Cognitive Impairment: A Maladaptive Compensatory Mechanism Associated with Poor Semantic Memory Performance

    Get PDF
    Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population

    Associations between neuropsychiatric symptoms and Alzheimer’s disease biomarkers in people with mild cognitive impairment

    Get PDF
    Background: Neuropsychiatric symptoms (NPS) are associated with faster decline in mild cognitive impairment (MCI). This study aimed to investigate the association between NPS severity and Alzheimer’s disease (AD) biomarkers, i.e., amyloid-β (Aβ), phosphorylated tau protein (p-tau) and hippocampal volume ratio (HR), to characterise in more detail MCI patients with a poor prognosis. Methods: A total of 506 individuals with MCI and 99 cognitively unimpaired older adults were selected from the ADNI dataset. The patients were divided into three different groups based on their NPI-Q total scores: no NPS (n = 198), mild NPS (n = 160) and severe NPS (n = 148). Regression models were used to assess the association between the severity of NPS and each biomarker level and positivity status. Results: Cerebrospinal fluid Aβ levels were positively associated with older age and lower MMSE scores, while higher p-tau levels were associated with female sex and lower MMSE scores. Only patients with severe NPS had a lower HR (β = −0.18, p = 0.050), i.e., more pronounced medio-temporal atrophy, than those without NPS. Discussion: Only HR was associated with the presence of NPS, partially in line with previous evidence showing that severe NPS may be explained primarily by greater grey matter loss. Future longitudinal studies will be needed to ascertain the relevance of this finding

    Multiple brain networks support processing speed abilities of patients with multiple sclerosis

    Get PDF
    Objectives: Many people affected by multiple sclerosis (MS) experience cognitive impairment, especially decreases in information processing speed (PS). Neural disconnection is thought to represent the neural marker of this symptom, although the role played by alterations of specific functional brain networks still remains unclear. The aim is to investigate and compare patterns of association between PS-demanding cognitive performance and functional connectivity across two MS phenotypes. Methods: Forty patients with relapsing-remitting MS (RRMS) and 25 with secondary progressive MS (SPMS) had neuropsychological and MRI assessments. Multiple regression models were used to investigate the relationship between performance on tests of visuomotor and verbal PS, and on the verbal fluency tests, and functional connectivity of four cognitive networks, i.e. left and right frontoparietal, salience and default-mode, and two control networks, i.e. visual and sensorimotor. Results: Patients with SPMS were older and had longer disease history than patients with RRMS and presented with worse overall clinical conditions: higher disease severity, total lesion volume, and cognitive impairment rates. However, in both patient samples, cognitive performance across tests was negatively correlated with functional connectivity of the salience and default-mode networks, and positively with connectivity of the left frontoparietal network. Only the visuomotor PS scores of the RRMS group were also associated with connectivity of the sensorimotor network. Conclusions: PS-demanding cognitive performance in patients with MS appears mainly associated with strength of functional connectivity of frontal networks involved in the evaluation and manipulation of information, as well as the default mode network. These results are in line with the hypothesis that multiple neural networks are needed to support normal cognitive performance across MS phenotypes. However, different PS measures showed partially different patterns of association with functional connectivity. Therefore, further investigations are needed to clarify the contribution of inter-network communication to specific cognitive deficits due to MS

    Combining Structural Magnetic Resonance Imaging and Visuospatial Tests to Classify Mild Cognitive Impairment

    Get PDF
    Background: Recently, efforts have been made to combine complementary perspectives in the assessment of Alzheimer type dementia. Of particular interest is the definition of the fingerprints of an early stage of the disease known as Mild Cognitive Impairment or prodromal Alzheimer's Disease. Machine learning approaches have been shown to be extremely suitable for the implementation of such a combination. Methods: In the present pilot study we combined the machine learning approach with structural magnetic resonance imaging and cognitive test assessments to classify a small cohort of 11 healthy participants and 11 patients experiencing Mild Cognitive Impairment. Cognitive assessment included a battery of standardised tests and a battery of experimental visuospatial memory tests. Correct classification was achieved in 100% of the participants, suggesting that the combination of neuroimaging with more complex cognitive tests is suitable for early detection of Alzheimer Disease. Results: In particular, the results highlighted the importance of the experimental visuospatial memory test battery in the efficiency of classification, suggesting that the high-level brain computational framework underpinning the participant's performance in these ecological tests may represent a “natural filter” in the exploration of cognitive patterns of information able to identify early signs of the disease

    Dementia-related genetic variants in an Italian population of early-onset Alzheimer’s disease

    Get PDF
    Early-onset Alzheimer’s disease (EOAD) is the most common form of early-onset dementia. Although three major genes have been identified as causative, the genetic contribution to the disease remains unsolved in many patients. Recent studies have identified pathogenic variants in genes representing a risk factor for developing Alzheimer’s disease (AD) and in causative genes for other degenerative dementias as responsible for EOAD. To study them further, we investigated a panel of candidate genes in 102 Italian EOAD patients, 45.10% of whom had a positive family history and 21.74% with a strong family history of dementia. We found that 10.78% of patients carried pathogenic or likely pathogenic variants, including a novel variant, in PSEN1, PSEN2, or APP, and 7.84% showed homozygosity for the ε4 APOE allele. Additionally, 7.84% of patients had a moderate risk allele in PSEN1, PSEN2, or TREM2 genes. Besides, we observed that 12.75% of our patients carried only a variant in genes associated with other neurodegenerative diseases. The combination of these variants contributes to explain 46% of cases with a definite familiarity and 32% of sporadic forms. Our results confirm the importance of extensive genetic screening in EOAD for clinical purposes, to select patients for future treatments and to contribute to the definition of overlapping pathogenic mechanisms between AD and other forms of dementia

    In-vivo vascular application via ultra-fast bioprinting for future 5D personalised nanomedicine

    Get PDF
    The design of 3D complex structures enables new correlation studies between the engineering parameters and the biological activity. Moreover, additive manufacturing technology could revolutionise the personalised medical pre-operative management due to its possibility to interplay with computer tomography. Here we present a method based on rapid freeze prototyping (RFP) 3D printer, reconstruction cutting, nano dry formulation, fast freeze gelation, disinfection and partial processes for the 5D digital models functionalisation. We elaborated the high-resolution computer tomography scan derived from a complex human peripheral artery and we reconstructed the 3D model of the vessel in order to obtain and verify the additive manufacturing processes. Then, based on the drug-eluting balloon selected for the percutaneous intervention, we reconstructed the biocompatible eluting-freeform coating containing 40\u2009nm fluorescent nanoparticles (NPs) by means of RFP printer and we tested the in-vivo feasibility. We introduced the NPs-loaded 5D device in a rat's vena cava. The coating dissolved in a few minutes releasing NPs which were rapidly absorbed in vascular smooth muscle cell (VSMC) and human umbilical vein endothelial cell (HUVEC) in-vitro. We developed 5D high-resolution self-dissolving devices incorporating NPs with the perspective to apply this method to the personalised medicine
    corecore