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Abstract: Recently, efforts have been made to combine complementary perspectives in the assessment of Alzheimer type dementia. Of 
particular interest is the definition of the fingerprints of an early stage of the disease known as Mild Cognitive Impairment or prodromal 
Alzheimer’s Disease. Machine learning approaches have been shown to be extremely suitable for the implementation of such a 
combination. In the present pilot study we combined the machine learning approach with structural magnetic resonance imaging and 
cognitive test assessments to classify a small cohort of 11 healthy participants and 11 patients experiencing Mild Cognitive Impairment. 
Cognitive assessment included a battery of standardized tests and a battery of experimental visuospatial memory tests. Correct 
classification was achieved in 100% of the participants, suggesting that the combination of neuroimaging with more complex cognitive 
tests is suitable for early detection of Alzheimer Disease. In particular, the results highlighted the importance of the experimental 
visuospatial memory test battery in the efficiency of classification, suggesting that the high-level brain computational framework 
underpinning the participant’s performance in these ecological tests may represent a “natural filter” in the exploration of cognitive 
patterns of information able to identify early signs of the disease.   

 Keywords: Visuospatial Memory, Spatial Abilities, Support Vector Machine, Magnetic Resonance Imaging, Mild Cognitive 
Impairment, Classification. 

1. INTRODUCTION 

1.1. Alzheimer’s disease and Mild Cognitive Impairment 
Recent pharmaceutical trials have demonstrated that slowing 
or reversing pathology in Alzheimer's disease (AD) is likely 
to be possible only in the earliest stages of disease, perhaps 
even before significant symptoms develop [1]. The 
development and use of diagnostic tools for the early detection 
of AD, therefore, might be helpful for clinicians. An ideal 
diagnostic tool must be sensitive to the earliest disease 
changes, not too expensive and should also be able to 
differentiate the very early stage of AD from normal ageing. 
A long-standing literature has addressed the question of what 
deficits can be taken as early predictors of AD. 

AD is the most frequent cause of dementia. Cognitive 
impairments commonly begin with difficulties in 
remembering recent events as well as semantic memory 
impairments [2]. Although visuospatial deficits have also 
been described in Mild Cognitive Impairment (MCI), that 
may represent the prodromal phase of AD, this multi-faceted 
domain of cognition is not extensively assessed and fully 
investigated in clinical practice [3].  

The term MCI was proposed by Petersen and colleagues [4] 
to define a nosological entity referring to elderly persons with 
mild cognitive deficits without dementia. MCI encompasses 
patients with and without memory impairment. Of those with 
memory loss, some have memory impairment as their only 
deficit (single domain amnestic MCI) whereas others have 
impairments of memory plus changes in other cognitive 

domains (multiple amnestic MCI). Of those without any 
memory loss, some patients have deficits only in one domain 
(single non-amnestic MCI), such as visuospatial abilities, 
executive functions, praxis or language, whereas others have 
deficits in several domains, excluding memory (multiple non-
amnestic MCI) [5]. 

Some studies have investigated the influence of normal and 
pathological ageing on visuospatial performance showing an 
age-related decline in normal ageing, which is more severe 
and earlier in pathological conditions such as AD or Dementia 
with Lewy Bodies [6-8]. These patients frequently have 
difficulties with spatial orientation in everyday life and may 
fail to find their way in unfamiliar environments when facing 
entirely new spatial settings [9]. 

1.2. Visuospatial abilities 

Spatial ability is defined as the skill in representing, 
transforming, generating, and recalling symbolic, 
nonlinguistic information [10]. It is not considered a unitary 
function, and, in fact, the plural – spatial abilities – is 
frequently used. Spatial abilities include a wide range of 
processes and components, such as spatial perception, 
visualization and mental rotation [10,11], and these skills are 
essential in  spatial navigation, even if the two functions can 
be considered as partially distinct [12,13]. Spatial navigation 
is the ability to find and follow a route from one place to 
another [14] and relies onto two different, egocentric and 
allocentric, strategies, respectively related to distinct  spatial 
representations. The egocentric strategy is based on route 
spatial representation, a body-centered representation, where 
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the position of landmarks is encoded with respect to the 
position of the subject; the allocentric strategy is associated 
with a survey, world-cantered representation, where locations 
and distances among landmarks are encoded and maintained 
independently of the position of the subject. Different cortical 
areas serve the execution of spatial tasks and spatial 
navigation [15]. In particular it seems that different memory 
systems are involved in small and large scale environments 
[16,17], in object locations and navigational memory [18], 
map learning and navigation [19], and in navigation using 
allocentric or egocentric strategies [20]. A recent meta-
analysis [21] showed  an age related decrease in the 
performance on standardized test  of spatial perception, spatial 
visualization and mental rotation. Spatial navigation is 
subjected to a decrement with ageing, particularly when 
allocentric strategies are required [22], and in unfamiliar 
contexts  [23]. The decrement is more severe in pathological 
ageing, and topographical disorientation is described as one of 
the distinctive signs of AD [9]. Moreover, several authors 
consider spatial navigation and spatial ability deficits as first 
signs of incipient AD in MCI patients [2,20]. 

The assessment of spatial and navigation abilities is also a 
valid tool for discriminating between healthy ageing and MCI 
individuals. Mitolo et al (2013) [3] administered a battery of 
spatial tasks to a group of MCI patients and a group of healthy 
controls and they found that the discriminative power of the 
spatial tasks in identifying MCI was high and superior in 
comparison to the other neuropsychological tests frequently 
used in clinical settings, including the Stroop test, Wisconsin 
card sorting test, and category fluency test. Moreover, the 
same authors found distinct patterns of significant correlations 
between grey matter volume and performance on spatial tests 
in the MCI group and in the healthy control [3].  

Overall, the picture described so far highlights the importance 
of adding spatial tests to neuropsychological batteries, and of 
identifying reliable tools for assessing spatial and navigation 
ability in clinical settings.  In this context Mitolo et al. (2015) 
[24] have devised a battery of spatial tests and questionnaires 
designed to assess spatial ability in normal and pathological 
ageing. The battery is suitable for use in clinical settings and 
comprised tests for the assessment of three different abilities 
within the spatial domain: route learning, map learning and 
objects location. Further, it includes self-report scales, 
designed to obtain measures of navigation abilities, as they 
appear in every-day life, with questionnaires evaluating sense 
of direction, spatial anxiety, self-efficacy, and attitude toward 
spatial tasks. So far, several studies have shown that 
subjective measures of spatial efficiency are reliable 
indicators of actual performance in navigation and orienting 
task [25-28]. The battery, administered to a sample of 90 
healthy aged participants, appeared to have good internal 
reliability, and, as expected, to tap different abilities within the 
spatial domain.  Furthermore, significant correlations were 
found between the spatial tests and the questionnaires, 
suggesting a relationship between the abilities measured by 
the spatial tests and spatial performance in every-day life 
(Mitolo et al. 2015) [24].   

A long-standing literature has addressed the question of what 
deficits can be taken as early predictors of AD. So far, the 
greatest attention has been paid to verbally-mediated memory 
disorders, specifically episodic and semantic memory that are 

traditionally considered the earliest and most severe deficits 
[29]. Visuospatial deficits, even in the early stages of AD, 
have long been recognized but have not been extensively 
studied [30]. 

AD causes circumscribed atrophy in distinct neural networks, 
and they impact visuospatial abilties in different ways. These 
effects depend on topographic patterns of brain pathology, 
and it is, therefore, important to use anatomically-specific 
methods for diagnosis and for monitoring disease progression 
[31]. 

1.3. Searching for Biomarkers: magnetic resonance 
imaging 

At present, several types of biomarkers have been found to be 
sufficiently sensitive to discriminate the MCI status from 
normal ageing, including brain atrophy measured using 
magnetic resonance imaging (MRI) [32], hypometabolism 
measured by FDG-PET imaging [33], and quantification of 
specific proteins measured in the cerebrospinal fluid [34]. 

MRI is considered a promising technique for obtaining new 
feasible biomarkers. The most popular method to analyse 
structural MRI data is voxel based morphometry (VBM) [35], 
in which statistical significance in between-group analyses is 
assessed voxel by voxel on the maps derived from the 
comparison of high resolution structural T1-weighted (T1w) 
images. A big effort in the direction of deriving relevant 
structural diagnostic features based on state of the art 
structural MRI acquisitions is represented by the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI, 
http://adni.loni.usc.edu). The ADNI data repository includes 
high resolution T1w images collected from 400 subjects 
experiencing MCI. Based on these data, numerous studies 
have identified regional grey matter atrophy patterns 
associated with MCI and AD, by computing morphological 
indices as modulated grey matter (modGM) [36] and cortical 
thickness [37]. Nevertheless the translational shift from group 
studies to single subject approach remains still 
unaccomplished.  

1.4. The machine learning approach 

Recently, in the search for operative biomarkers, the analysis 
of MRI data has benefitted from machine learning based 
techniques [38-41]. If the first approach is mainly focused on 
finding group differences, and to explain them, the second one 
is much more focused on single subject assessment 
(classification). For a comprehensive review about the single 
subject approach, benefits and pitfalls, see [42]. Differently 
from univariate methodologies like VBM, machine learning 
approaches are based on multivariate analysis of data. The 
rational of a machine learning approach is to search for 
patterns of similarities/dissimilarities contained in the entire 
data set (e.g. the whole modGM map or the entire cognitive 
test scores set) of subjects classified as belonging to 
same/different groups (e.g. HC subjects and patients suffering 
from MCI). Once the pattern is “learned” by the “machine”, 
the result is generalised to predict which group a new 
unidentified subject belongs to.  In 2014-15 the computer-
aided diagnosis of dementia challenge (CADDementia 
Challenge; http://caddementia.grand-challenge.org) took 
place, in which the performance of 29 newly developed 
algorithms was compared. The comparison was implemented 

http://adni.loni.usc.edu/
http://caddementia.grand-challenge.org/
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on a structural MRI dataset composed of T1w volumes 
acquired in more than 300 subjects. The goal was to classify 
subjects in three possible groups, healthy volunteers, patients 
with MCI and patients with AD. The best results, allowing 
63% correct classification [43], were still far from the 
identification of a golden standard algorithm, but the 
challenge clearly evidenced that the best performance was 
obtained by combining different types of features.  

 

1.5. Support vector machine and multi kernel learning. 

In this study we combine the visuospatial ecological tasks 
described in Mitolo et al [3,24], standard cognitive tests and 
MRI derived modGM to test the accuracy of prediction of 
MCI diagnosis by using a machine learning approach based 
on support vector machine (SVM)[44]. SVM has been shown 
to be a feasible method to analyze large feature small sample 
data sets [45]. In fact a standard modGM map contains a 
number of voxels (features) of the order of 100.000 while a 
classical MRI clinical study only includes few tens of 
subjects. To find the solution to the learning problem the SVM 
approach associates a mathematical entity called Kernel to the 
whole data set (features set) (See Supplementary Materials for 
more details on SVM). 

Although in principle machine learning methods allow better 
accuracy in classification than univariate methods, differently 
from univariate methods they miss in the identification of 
those regions/voxels responsible for the classification 
performance. In fact their principal goal is not to analyse 
statistical differences between single regions/voxels but to 
recognise the existence of some patterns, not necessarily 
exploring within them. Among the methods proposed to 
overcome this limitation a new one makes use of the so-called 
Multi Kernel Learning (MKL) approach [46], an extension of 
the single Kernel approach (see Supplementary Materials). 
The MKL approach intrinsically offers the opportunity to 
refine the results by questioning the relevance/irrelevance of 
different feature subsets. The whole features set is divided in 
different subsets, and a different Kernel is associated to each 
subset. This can be useful to include, in the same optimisation 
problem, features of different nature (for example, as in the 
case of the present study, neuroimaging data and cognitive test 
scores). The method can be also useful to select the most 
important subsets by assigning relative weights to the Kernels 
associated with each subset. The algorithm can be forced to 
assign a zero weight to irrelevant Kernels (i.e. to retain only a 
small portion of feature subsets).  

The last potentiality was used in this study in order to reduce 
the subset of features among the whole set we analysed and to 
try to determine the driving feature sets in the prediction 
performance.  
 

In the present study the PRoNTo software [47-49] was used 
to implement the SVM MKL approach. PRoNTo is a user 
friendly tool recently developed at University College of 
London which allows MKL analysis in addition to standard 
classification optimization procedures. The MKL 
implementation in PRoNTo is grounded on the SimpleMKL 
algorithm developed by Alain Rakotomamonjy and co-

workers at CNRS/Universite 囲 de Technologie de Compie`gne 
(France) [50]. 

 

1.6. Aims 

Given the evidence reported in previous studies [3, 24], in the 
present study we aimed to combine the data derived from the 
neuropsychological tests battery with those derived from 
structural MRI, to verify their discriminant power in 
identifying MCI patients. We expected that the combination 
of behavioural and MRI data would have more discriminant 
power than individual measures alone, and that the more 
complex experimental visuospatial tests would be better 
classifiers than standard cognitive measures 

*Address correspondence to this author at the Department of Neuroscience of 
Parma University, Via Volturno 39/E, 43100, Parma (PR), Italy; Tel/Fax: 
+39-0521-903963; E-mail: fabrizio.fasano@nemo.unipr.it 
 

2. MATERIALS AND METHOD  

2.1. Participants 

Eleven patients with MCI (73 ± 6 years, 5 females, 6 males) 
and eleven healthy control (HC) participants (68 ± 5 years, 7 
females, 4 males) were included in this study (see Table 1). 
All participants had a complete neuropsychological 
assessment using standardised tests [3]. The MCI patients 
were diagnosed according to Petersen’s criteria [51], which 
include: subjective or proxy cognitive complaint; objective 
impairment in memory and/or in other cognitive domains; 
relatively intact functional ability.  The HC group scored in 
the normal range on all tasks. 

In detail, the MCI patients were all of the amnestic type: 5 
patients were amnestic single-domain and 6 patients were 
amnestic multidomain. HC participants were in good general 
physical and cognitive health and had a Mini Mental State 
Evaluation (MMSE) [52] score higher than 27. Participants 
with neurological or mood disorders were excluded.  

All participants were also assessed with a battery of 
experimental visuospatial memory tasks, self-rating spatial 
questionnaires, and high resolution 3D MRI T1w brain 
scanning.  

The study was approved by the local ethics committee, and all 
participants provided written informed consent before study 
initiation. 

2.2. Cognitive assessment 

All participants underwent a battery of standardised 
neuropsychological tests and a battery of new experimental 
tests, as described in two previous studies [3,24]. The 
standardised neuropsychological battery included the 
following tests: Mini Mental State Examination (MMSE); IQ 
(intelligence quotient) tests: Raven’s Coloured Progressive 
Matrices, TIB (Test di intelligenza breve), Vocabulary test 
(WAIS sub-test); verbal memory tests: Prose Memory Test, 
Rey Auditory Verbal Learning Test, Verbal semantic 
encoding and recognition, Digit Span forward; language tests: 
Boston Naming Test, Verbal Associative Fluency Test, 
Category Words Fluency Test; executive function tests: 
Stroop test, Wisconsin Card Sorting Test (WCST), Tower of 

mailto:fabrizio.fasano@nemo.unipr.it


4    Journal Name, 2014, Vol. 0, No. 0 Principal Author Last Name  et al. 

London, Dual task, Multiple feature target cancellation, Digit 
Span backward; visuospatial and visual perception tests: Corsi 
Block Tapping test, Rey Osterrieth Complex Figure, 
Visuospatial supra span, Visual Object and Space Perception 
battery (VOSP), Mental Rotation test. 

The experimental battery included object location 
recognition, map learning and route learning, self-
administered questionnaires evaluating sense of direction, 
attitude toward environment orientation tasks, spatial 
orientation anxiety and self-efficacy toward environment 
orientation tasks. A total of 38 scores were recorded for each 
participant from the standardised test battery, and a total of 14 
scores from the experimental one, 10 objective test scores and 
4 self-evaluative test scores (see Table 1 for the experimental 
test battery scores).  

2.2.1. Object location task 

This task assesses object recognition, recall and location 
skills. It is divided into two sub-tests that involve recognising, 
recalling and locating some objects in a picture. In the 
recognition sub-test, participants are shown six objects 
(elephant, lamp, slipper, guitar, bottle and hat) and asked to 
memorise them. Then, for each object, participants are asked 
to recognise the target among three options. The total number 
of items correctly recognised is recorded. The second sub-test, 
which is assumed to require spatial memory for locations, 
involves memorising a picture (42 cm X 30 cm) of a room 
containing twelve objects (table, cat, chessboard, guitar, etc.) 
for 1 min, then recalling all the objects and locating them in a 
picture of an empty room immediately afterwards, by writing 
the name of the object in its location. The resulting score 
corresponds to the number of objects recalled and correctly 
located. 

2.2.2. Map learning task 

This task was developed to assess the respondent’s ability to 
memorise a map. It involves remembering the names and 
locations of eight landmarks on a map (21 cm X 30 cm), i.e., 

pharmacy, school, cinema, hospital, bakery, park, bar and 
dairy. Immediately after being exposed to the map for 5 min, 
participants have to write the names of the landmarks in the 
right position on a blank map. The learning phase (and 
subsequent recall and localisation phase) is repeated, and we 
calculated the number of landmarks recalled and located in the 
right position after the first and second learning trials. 

2.2.3. Route learning task  

This task assesses memory for routes. Similar to the procedure 
used in a previous work [17], this task involves memorising 
routes within a matrix of 25 squares (5 X 5) located on the 
floor; each square is 15 X 15 cm, and the distance between the 
squares is 30 cm. The task is divided into three sub-tests, and, 
for each one, participants have to remember increasingly 
longer routes. In the first sub-test (route learning from action), 
the participant first learns the routes by stepping on the 
sequence of squares with the examiner and is asked to repeat 
each route immediately afterwards. In the second sub-test 
(route learning from vision), the participant is asked to watch 
while the examiner covers a route and to repeat it immediately 
afterwards. In the third sub-test (route learning from a map), 
participants learn each route on a map and then reproduce it 
on the matrix. Each sub-test begins with a route of just two 
segments, and then the routes become gradually longer 
(including three segments, four segments, and so on). For our 
study, two sequences were used for each length, and the test 
came to an end when a participant was unable to reproduce 
both sequences of the same length. The longest route that a 
participant reproduced correctly in at least one of the two trials 
was taken as the score for each sub-test. 

  

 

 

 

 

Table 1. Demographic data, mean (and standard deviation) spatial scores in HC and MCI groups. The Spatial 
Questionnaires and Visuospatial tests scores are indicated respectively as “CTS14-self evaluative” and 
“CTS14-objective” in the article. 

 
HC MCI 

 Mean (SD) Mean (SD) 

Demographic data     

Age (years) 68 (5) 73 (6) 

Education (years) 9 (5) 8 (3) 

MMSE 30 (1) 26 (3) 

Spatial questionnaires      

Spatial Anxiety Scale 14 (4) 16 (5) 

Spatial Attitude Scale 22 (4) 18 (4) 

Self-Efficacy Scale 18 (5) 13 (3) 

Sense of Direction Scale 55 (8) 43 (12) 

Visuospatial tests     

Objects recognition 5 (1) 3 (1) 

Objects recall 10 (1) 6 (3) 
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Objects location 11 (1) 7 (3) 

Map recall 1 7 (1) 3 (2) 

Map location 1 6 (1) 2 (1) 

Map recall 2 8 (1) 4 (2) 

Map location 2 8 (1) 3 (3) 

Learning from action 5 (1) 4 (1) 

Learning from vision 6 (1) 4 (1) 

Learning from map 6 (1) 4 (1) 

 

 

2.3 MRI 

2.3.1. Acquisition 

All participants underwent the same MRI protocol on a 3 
Tesla General Electric MR750 scanner, equipped with 8-
channel phased array receiver head coil. The protocol 
included an Inversion Recovery Prepared Fast Spoiled 
Gradient Recall 3D high resolution T1w sequence (0.9 × 0.9 
× 0.9 mm3, TR/TE = 9.7/4 ms).  

2.3.2. Modulated grey matter maps 

For each subject the original (subject native space) T1w 
images were skull stripped and segmented to obtain the grey 
matter (GM) maps in native space (nsGM). The skull stripped 
T1w images were diffeomorphically registered to a template 
previously created in our laboratory from 10 healthy 
volunteers (5 females and 5 males) and 10 age and gender 
matched patients with MCI [53].  The resulting template space 
T1w images were in turn segmented to obtain the template 
space GM maps, and the last ones were averaged to obtain a 
study population GM template. The diffeomorphic 
registration between the nsGM and the study population GM 
template were computed and applied to the (weakly 
smoothed, 1mm full width half maximum) nsGM images, 
obtaining for each participant its GM to template grey matter 
probability map. For each participant the Jacobian of the 
diffeomorphic transformation was multiplied for the GM to 
template probability map and logarithmic scaled obtaining the 
modGM maps. All modGM maps were under-sampled from 
the original 0.9 x 0.9 x 0.9 mm3 to 2 x 2 x 2 mm3.  

2.3.3. Regions of interest 

On the population template 81 regions of interest were 
extracted by applying FreeSurfer 
(http://surfer.nmr.mgh.harvard.edu/) [54,55] automated 
parcellation procedure and a study Atlas was created by 
labelling the region of interests with integers values ranging 
1-81 (see Figure 1 and Supplementary Materials for label 
names and voxel counts for each region). A study mask 
including all the regions was also created. The study Atlas and 
the study mask were under-sampled to 2 x 2 x 2 mm3 to match 
the modGM maps. 

2.4. Age effect correction 

Age was found to be significantly different between the two 
groups (68±5y for the MCI group and 73±6y for the HC 
group, p=0.019). Differently from univariate approaches, 
multivariate analysis does not allow covariates integration in 

the classification procedures. A way to overcome the problem 
of nuisance variables (e.g. age) in multivariate procedures is 
to perform a prior general linear model (GLM) analysis to 
compute the nuisance variable effect, and then to correct the 
original features by applying the final classification analysis 
to the GLM corrected features [56]. Following this procedure, 
we corrected for age effect the modGM maps and the 
cognitive tests scores. More details are provided in 
Supplementary Materials.  

The results obtained with the corrected data were very similar 
to the ones obtained without correction (see Supplementary 
Materials), suggesting that the small group difference in age 
had no significant influence on the results. In the following 
sections we report the results obtained by using as source data 
for our analysis (features) the original (uncorrected) data. 
Nevertheless, in Table 2 the prediction accuracy of GLM age 
corrected data for the whole feature set is also reported.  

  

2.5. Multivariate analysis 

2.5.1. The features 

The 38 test scores (CTS38) of the standard battery, the 14 test 
scores (CTS14) of the visuospatial battery and the 77715 
modGM values in the voxels included in the regions selected 
for the study Atlas were used as input features in a 
multivariate analysis to assess the classification power of the 
combination of cognitive tests and structural MRI.  

2.5.2. Multi-kernel learning classification procedure 

An L2-regularized L1-loss SVM MKL approach [50] was 
applied, as implemented in the PRoNTo software [47-49]. In 
solving the MKL optimization problem, one linear kernel was 
assigned to each brain region in the Atlas (81 kernels), one 
linear kernel was assigned to the standard test battery, one 
linear kernel was assigned to the self-evaluation spatial tests 
and one linear kernel was assigned to the objective 
visuospatial tests, for a total of 84 kernels (see Supplementary 
Materials). A leave-one-out cross validation was used to 
determine the accuracy of classification, and a nested 5-fold 
cross validation was used to choose the optimal soft-margin 
parameter in SVM (by exponential spanning [0.1, 1, 10]). We 
implemented a Matlab (The MathWorks Inc., Natick, MA, 
2000) home made script to integrate the cognitive tests results 
with the neuroimaging (modGM) ones in the PRoNTo 
framework. Due to the high variability of features among 
brain regions and the reduced number of features in the 
cognitive tests, kernels were normalized. The significance 

http://surfer.nmr.mgh.harvard.edu/
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level of classification accuracy was assessed by permutation 
tests (1000 repetitions), with significance threshold set at 
p=0.01. 

2.5.3 Best Kernels selection 

As discussed in the introduction, the PRoNTo software MKL 
approach intrinsically offers the opportunity to refine the 
results by questioning the relevance/irrelevance of each 
feature set, i.e. by optimizing the Kernel weights and forcing 
(L1-loss) the assignation of zero weights to irrelevant Kernels. 
We applied this analysis to extract the relevant features sets 
(i.e. brain regions and/or cognitive test sets) from the whole 
features set. 

3. RESULTS AND DISCUSSIONS:  

3.1. Evaluation of prediction accuracy 

Preliminarily, nested 5-fold cross validation revealed that the 
best soft-margin parameter was 1. Classification accuracy of 
the whole features set (including modGM in the 81 brain 
regions and the whole battery of cognitive tests CTS14 and 
CTS38) was found to be 100% (sensitivity = specificity = 1). 
For all the tests the prediction accuracy estimation, as 
determined by the permutation test, was found to be 
significant at p=0.01 level (Table 2, first row). The 
classification scores obtained with the exclusion of the CTS38 
was still found to be 100%. On the contrary the exclusion of 
CTS14 or of modGM scores worsened the accuracy. See 
Table 2 for more details. The results imply that the CTS14 
scores were determinant to improve the classification 
accuracy.  

3.2. Feature sets contribution results 

The MKL ranking procedure clearly identified a group of 10 
scores of the objective visuospatial memory tests (CTS14 
objective) as the driving feature set for classification, with the 
associated Kernel contributing for the 63,62% to the model 
prediction. The other regions found to have non zero weight 
associated Kernel were: left pars opercularis (12,27%), right 
entorhinal cortex (8,73%), left pericalcarine (8,14%), Brain 
Stem (3,97%), left Nucleus Pallidum (1,32%), right Putamen 
(0,57%). right Amygdala (0,57%), right Putamen (0,56), right 
Caudate Nucleus (0,29%), right Thalamus (0,15%), right 
caudal middle frontal cortex (0,13%), right Accumbens area 
(0,09%), left pars orbitalis (0,07%), CTS14 self-evaluative 
(0,04%), left transverse temporal cortex (0,04%). See Figure 
1. The contribution, the exponential rankings and feature set 
size (number of features) of each region/cognitive test set are 
reported in the Supplementary Materials.  

As already suggested by the classification accuracies results 
obtained by combining different feature sets (see previous 
paragraph and Table 2), the visuospatial tests appeared to 
clearly drive the performance of the classifier. See Discussion 
for a more detailed analysis of the implications of the results 
and for an interpretation which highlights the technical 
approach benefits and pitfalls, and the necessary interpretative 
caution given the small size cohort of participants.  

 

 

 

 

Table 2. For different combinations of feature sub-sets, the weight (%) of the feature sub-set in the prediction, the accuracy of 
prediction, true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) as well as sensitivity and 
specificity are reported. The estimation of balanced significance of the prediction score as assessed by the permutation test is also 
reported (BA p-value). Where for a given combination of feature sub-sets one sub-set is absent, a dash sign (-) is reported in the 
table. Bold is used to highlight the weight of the most contributive feature set. The GLM age corrected data results for the whole 
feature set are also reported.  

 

 
 

 

3.3. Discussion 

modGM CTS38   CTS14  TP TN FP FN sensitivity specificity BA p-value 
objective self  eval. 

 

Original data 

36,34% 0% 63,62% 0,04% 11 11 0 0 1,00 1,00 0.001 

100,00% - - - 9 11 2 0 1,00 0,85 0.006 

- 0,59% 99,35% 0,06% 11 9 0 2 0,85 1,00 0,001 

71,48% 28,52% - - 9 10 2 1 0,90 0,83 0.001 

36,67% - 63,30% 0,03% 11 11 0 0 1,00 1,00 0.001 

 

GLM age corrected data 

33,69% 1,03% 65,27% 0,01% 10 10 1 1 0.91 0.91 0.004 
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In the Introduction an important concept related to the use of 
machine learning approaches in the “individual level 
assessment challenge” has been extensively highlighted: 
when applied to multimodal investigations, a multivariate 
analysis causes a paradigm shift from “using multiple 
modalities to interpret individual specific differences between 
two classes” (e.g. different regional grey matter density in 
patients and HC participants) to “using multiple modalities to 
identify the presence of patterns able to differentiate the two 
classes”. It is important to restate here that, due to this reason, 
the new paradigm may determine a loss of interpretability of 
results, although it may allow, in principle, gains in sensitivity 
and specificity. 

This pilot study confirmed these expectations.  The results, 
while obtained in a small cohort of participants, suggest that 
performance scores in objective visuospatial memory tests 
and the regional values of modGM (an index assessing GM 
integrity) may contain patterns of information which, added 
to the structural information provided by MRI, allow a better 
classification between the early stages of cognitive decline 
and healthy ageing than standard cognitive tests.  

Looking at Table 2 we can see that the single modalities 
contributed differently in sensitivity and specificity when 
taken individually. When used together their combination 
resulted in increased classification performance. Thus the 
present results support the use of the combination of proper 
cognitive explorations and GM integrity features to detect the 
early stages of abnormal cognitive decline. In particular the 
present investigation suggested the specific advantage that 
may be offered to the classification procedure by adding a 
“complex objective measure” as the one represented by the 
visuospatial abilities to the feature set.  

In the current study estimation of Kernel weights in a MKL 
approach was suggested as a way to overcome the intrinsic 
lack of interpretability of any encoding method results 
[42,57,58], and to try to rank the contribution of the single 
scores set used in the study (brain regions assessed by MRI 
and cognitive tests). A clear indication of the driving role of 
visuospatial memory tests is shown by such analysis. In fact 
their contribution to the classification power is always higher 
than that of MRI and standard cognitive tests feature sets. This 
is clearly depicted by the results in Table 2 and Figure 1, 
especially looking at the third row of Table 2, showing the 
classification accuracy of the sub-sets combination including 
only CTS38, CTS14 objective and CTS14 self-evaluative (i.e. 
excluding MRI data).  The results are in accordance with our 
expectations and with the findings reported by Mitolo et al. 
(2013). It is also important to recognise that self-evaluative 
visuospatial test scores (possibly biased by patients’ poor 
awareness of their impaired abilities) were not as effective as 
objective measures in driving the process of classification.  

For MRI, the analysis of Kernel weights reveals a picture of 
brain regions that is only partially in agreement with 
expectations based on previous knowledge from studies of 
MCI converters vs healthy subjects [59-61]. This is most 
likely due to the high variability of results through the 
different cross validation folds (see following discussion and 
Supplementary Material on SVM for more details), to the 
small cohort of participants and to the overshadowing of some 
Kernels (regions) by others Kernels (regions) containing the 

same patterns of information [49]. This latter is a well-known 
issue in machine learning neuroscientific applications.   

A more in-depth analysis on these issues, as allowed by the 
Kernels method and described with more technical details in 
Supplementary Materials, supports the idea that the exclusion 
of those areas from the set of the best performing classifiers 
may be related to high inter-folds variability (probably due in 
part to the small data sample) and/or to the correlation of the 
information that they contain with the information contained 
in other areas (among the best performing ones, e.g. right 
Amygdala, right Caudate Nucleus, right Putamen and right 
Thalamus, right enthorinal cortex).  Most likely the “CTS14 
objective” sub-set of features itself might also share the same 
pattern of information of some excluded areas, denoting a 
correlation between visuospatial test performance and atrophy 
in some brain regions [3]. This last hypothesis is also 
supported by the results obtained on the true brain regions 
only (i.e. by excluding CTS14 from analysis). In fact in that 
case most of those areas that were found to have zero weights 
when GM areas were analysed in combination with the 
visuospatial tests gain nonzero weights (see Figure 1 and 
Supplementary Materials). 

One obvious question which needs addressing is why 
visuospatial objective test scores have such high classificatory 
power in this sample. In addition to their possible high 
sensitivity to early subtle visuospatial breakdown due to the 
insidious brain region specific effects of AD, it is possible that 
these tests might have higher sensitivity to subtle cognitive 
decline because of their potential load on other cognitive 
abilities. These tests, due to their ecological value and their 
complexity, may require the involvement of concurrent 
abilities (e.g. executive functions, memory, perception, 
semantic processing) as well as spatial orientation. We 
suggest that this multi-componential involvement would 
make them more sensitive to the breakdown of function of 
multiple brain networks even in a heterogeneous sample of 
different MCI phenotypes.  In this case, these tests would not 
operate, therefore, as a specific biomarker of AD, but rather 
as a marker of a diseased brain.  On the other hand, it is also 
equally possible that their high sensitivity may reflect specific 
breakdowns in fronto-parietal and default mode networks 
caused by the insidious regional encroachment of AD 
pathology over a long period of time. Finally, in relation to the 
machine learning procedure adopted in this investigation, we 
might argue that visuospatial tests may have represented a 
good natural “feature selection filter”. In fact, the very first 
important feature selection occurs in the feature choice phase. 
The extensive neuropsychological clinical experience 
rounding the tests definition may be seen as a complex 
ecological observation-based learning procedure, able to 
select those tests best suited to evaluate the high-level brain 
computational framework underpinning the participant 
disease. 

In the present article we reported the results obtained with age 
uncorrected data. While in principle the correction procedure 
may help to exclude the age related differences from being 
included together with the pathology related ones, the GLM 
based correction procedure is quite invasive and may 
introduce errors, especially for those features in which there 
is not a strong correlation between data and age. For that 
reason we decided to report the results based on original data 
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in the main body of this article and interested reader are 
referred to the supplementary material for the analyses of 
corrected data. Nevertheless we are aware of the limitation 
inherent in the use of unbalanced data. In fact, for those 
variables in which the unbalancing is not peculiar to the true 
nature of the phenomenon under investigation (i.e. if we are 
not interested to include them in the prediction/classification 
procedure), the best approach would be to have a balanced 
dataset. Anyway, being the age corrected and age uncorrected 
results very similar we can be quite confident that age didn’t 
play an important role in determining the good performance 
of the machine learning algorithm classification power, at 
least in this case. 

It has to be remarked here, that the two groups of participants 
could in principle be discriminated by standard group analysis 
procedures, as for example by the MMSE score (see Table 1). 
Nevertheless, the aim of the machine learning procedure 
adopted in the study was to shift from the group level to the 
single-subject level analysis. As shown in Table 2, the 
addition of standard tests (CTS38, including MMSE) did not 
contribute to the classification performance as well as the 
addition of the visuospatial tests (CTS14). Even more 
explicative of the potential limitations represented by single 
scores like the MMSE in a single-subject oriented approach 
are the false positive and false negative rates illustrated in 
Table 2. In fact, when the only modGM features were used to 
classify the participants, two false positive were found, but 
when the CTS38 were added to help classification procedure, 
in addition to the two false positive a false negative added as 
well. The MCI subject presented an MMSE score of 30. In 
this case the feature represented by the MMSE score degraded 
in some way the classification accuracy. This doesn’t mean 
that the MMSE would not be effective in “helping” participant 
classification, especially when they achieve an MMSE score 
clearly under or above a normality defined threshold, but this 
means that the MMSE is not sufficient to classify them. This 
is a well known issue in early AD classification, not limited to 
the MMSE score. Unsatisfactory false negative and/or false 
positive rates are common to all the state of the art biomarkers. 

Given the small dataset that does not allow wide 
generalisation of results, this should mainly be considered a 
pilot study, the results of which suggest the potential 
represented by the combination of neuroimaging and 
visuospatial test scores for obtaining accurate classification of 
disease status. In particular the very high percentage of 
success in the classification has to be taken with a degree of 
caution given the number of participants under investigation. 
The significance of predictivity, assessed by the permutation 
test was found to be always higher than 99% (p<0.01), making 
us quite confident that what we obtained was a reliable result. 
Nevertheless, due to the small number of participants, we 
cannot be sufficiently confident that the study populations are 
representative of the actual MCI patients and healthy people 
populations, that is they could embody sub-populations in 
which the predictors worked very well by chance [62]. Due to 
the small number of participants included in the training and 
testing set of each cross validation fold (respectively 21 and 1 
in the leave-one-out cross validation), some sort of 
“quantisation” of the detectable classification accuracies there 
exists (e.g. for 22/22 we have 100% accuracy, for 21/22 we 
would have 95% accuracy, and for 20/22 we would have 91% 
accuracy). It means that correct/incorrect classifications of 

few subjects may cause a dramatic percentage change of the 
estimated predictivity. We should also account for that when 
in the classification procedure we compare the results 
obtained by considering only one modality (i.e. modGM or 
cognitive tests alone, see Table 2) with the results obtained by 
including both modalities (modGM plus cognitive tests).  

CONCLUSION 

The present pilot study applied a combined approach of 
neuroimaging, standard cognitive test and visuospatial 
cognitive test assessment to a small cohort of patient 
experiencing MCI and a HC participant group. To investigate 
the classification power of the combined assessments we used 
an SVM approach based on an MKL algorithm recently 
integrated in the PRoNTo software. The classification 
procedure was found to be generalisable with a very high 
precision (100%), highlighting the superior performance of 
the feature mixture of a variety of features in identifying 
patterns that differentiate healthy participants from patients 
with MCI. The MKL approach may represent an optimal 
strategy to combine features which are very different in nature 
as neuroimaging indices and cognitive test scores. Although 
more work should be done to optimise Kernel selection (to 
avoid redundant region being erroneously excluded), the 
presented procedure appears also appropriate to identify those 
feature sets (brain regions and cognitive test batteries) best 
defining the patterns of information which can differentiate 
healthy brain structural substrates and functional performance 
from pathological ones.   

If our findings are confirmed in a larger population of 
participants, visuospatial memory tests and cerebral atrophy 
indices might be assumed to be reliable detectors of the 
pathological decline associated with the preclinical stage of 
AD, and would represent valid biomarkers. 

Ultimately, the present study, by combining a SVM MKL 
analysis with cognitive tests and neuroimaging investigation 
modalities, suggests a general feasible approach in the search 
for a good candidate biomarker for the early detection of AD.  

 

LIST OF ABBREVIATIONS 

AD: Alzheimer’s Disease; ADNI: Alzheimer’s Disease 
Neuroimaging Initiative; CTS: Cognitive Test Score; ER: 
Expected Ranking; GLM: general linear model; GM: Grey 
Matter; MCI: Mild Cognitive Impairment; MKL: Multi 
Kernel Learning; MMSE: Mini Mental Evaluation Score; 
modGM: Modulated Grey Matter; MRI: Magnetic Resonance 
Imaging; nsGM: native space Grey Matter; SVM: Support 
Vector Machine; TE: echo time; TR: repetition time; T1w: 
T1-weighted; VBM: Voxel Based Morphometry; 3D: 3-
dimensional; 

 

CONFLICT OF INTEREST 

The authors confirm that this article content has no conflict of 
interest. 

  

REFERENCES 



Short Running Title of the Article Journal Name, 2014, Vol. 0, No. 0    9 

 
1. Knight MJ, McCann B, Kauppinen RA, Coulthard 

EJ. Magnetic Resonance Imaging to Detect Ealry 
Molecular and Cellular Changes in Alzheimer's 
Disease. Front Aging Neurosci 8:139 

2. Iachini I, Iavarone A, Senese VP, Ruotolo F, 
Ruggiero G. Visuospatial memory in healthy elderly, 
AD and MCI: a review. Curr Aging Sci 2:43–59 
(2009).  

3. Mitolo M, Gardini S, Fasano F, Crisi G, Pelosi A, 
Pazzaglia F, et al. Visuospatial memory and 
neuroimaging correlates in mild cognitive 
impairment. J Alzheimers Dis 35:75–90 (2013).  

4. Petersen RC, Smith GE, Waring SC, Ivnik RJ, 
Tangalos EG, Kokmen E. Mild cognitive 
impairment: clinical characterization and outcome. 
Arch Neurol 6:303–8 (1999).  

5. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, 
Cummings JL, DeKosky ST. Practice parameter: 
early detection of dementia: mild cognitive 
impairment (an evidence-based review). Report of 
the Quality Standards Subcommittee of the 
American Academy of Neurology. Neurology 56: 
1133–42 (2001).  

6. Tiraboschi P, Salmon DP, Hansen LA, Hofstetter 
RC, Thal LJ, Corey-Bloom J. What best 
differentiates Lewy body from Alzheimer's disease 
in early-stage dementia? Brain 129:729–35 (2006).  

7. Mitolo M, Salmon DP, Gardini S, Galasko D, Grossi 
E, Caffarra P. The new Qualitative Scoring MMSE 
Pentagon Test (QSPT) as a valid screening tool 
between autopsy-confirmed dementia with Lewy 
bodies and Alzheimer's disease. J Alzheimers Dis 
39:823–32 (2014).  

8. Cagnin A, Bussè C, Jelcic N, Gnoato F, Mitolo M, 
Caffarra P. High specificity of MMSE pentagon 
scoring for diagnosis of prodromal dementia with 
Lewy bodies. Parkinsonism Relat Disord 21:303-5 
(2015).  

9. Pai M-C, Jacobs WJ. Topographical disorientation in 
community-residing patients with Alzheimer's 
disease. Int J Geriatr Psychiatry 19:250–5 (2004).  

10. Linn MC, Petersen AC. Emergence and 
characterization of sex differences in spatial ability: 
a meta-analysis. Child Dev 56:1479–98 (1985).  

11. Voyer D, Voyer S, Bryden MP. Magnitude of sex 
differences in spatial abilities: a meta-analysis and 
consideration of critical variables. Psychol Bull 
117:250-70 (1995).  

12. Allen GL, Kirasic KC, Dobson SH, Long RG, Beck 
S. Predicting environmental learning from spatial 
abilities: An indirect route. Intelligence 22:327-55 
(1996).  

13. Hegarty M, Montello DR, Richardson AE, Ishikawa 
T, Lovelace K. Spatial abilities at different scales: 
Individual differences in aptitude-test performance 
and spatial-layout learning. Intelligence 34:151–76 
(2006).  

14. Gallistel CR Eds. The Organization of Learning. 
Cambridge: MIT Press (1990).  

15. Waller D, Nadel L Eds. Handbook of Spatial 
Cognition. Washington: Amer Psychological 
Association (2013).  

16. Piccardi L, Berthoz A, Baulac M, Denos M, Dupont 
S, Samson S, et al. Different spatial memory systems 
are involved in small- and large-scale environments: 
evidence from patients with temporal lobe epilepsy. 
Exp Brain Res 206(2):171–7 (2010).  

17. Piccardi L, Iaria G, Ricci M, Bianchini F, Zompanti 
L, Guariglia C. Walking in the Corsi test: which type 
of memory do you need? Neurosci Lett 432(2):127–
31 (2008).  

18. Lambrey S, Samson S, Dupont S, Baulac M, Berthoz 
A. Reference frames and cognitive strategies during 
navigation: is the left hippocampal formation 
involved in the sequential aspects of route memory? 
Int Congr Ser 1250:261–74 (2003).  

19. Yamamoto N, Degirolamo GJ. Differential effects of 
aging on spatial learning through exploratory 
navigation and map reading. Front Aging Neurosci 
12: 4:14 (2012).  

20. Gazova I, Vlcek K, Laczó J, Nedelska Z, Hyncicova 
E, Mokrisova I, et al. Spatial navigation-a unique 
window into physiological and pathological aging. 
Front Aging Neurosci 21:4-16 (2012).  

21. Techentin C, Voyer D, Voyer SD. Spatial Abilities 
and Aging: A Meta-Analysis. Exp Aging Res 
40(4):395–425 (2014).  

22. Wiener JM, Kmecova H, de Condappa O. Route 
repetition and route retracing: effects of cognitive 
aging. Front Aging Neurosci 21:4-7 (2012).  

23. Devlin AS Eds. Mind and maze: Spatial cognition 
and environmental behavior. Westport: Praeger 
Publishers (2001).  

24. Mitolo M, Gardini S, Caffarra P, Ronconi L, Venneri 
A, Pazzaglia F. Relationship between spatial ability, 



10    Journal Name, 2014, Vol. 0, No. 0 Principal Author Last Name  et al. 

visuospatial working memory and self-assessed 
spatial orientation ability: a study in older adults. 
Cogn Process 16:165–76 (2015).  

25. Kozlowski LT, Bryant KJ. Sense of direction, spatial 
orientation, and cognitive maps. J Exp Psychol 
Human 3:590–8 (1977).  

26. Hegarty M. Development of a self-report measure of 
environmental spatial ability. Intelligence 30:425–47 
(2002).  

27. Pazzaglia F, Taylor HA. Perspective, Instruction, 
and Cognitive Style in Spatial Representation of a 
Virtual Environment. Spat Cogn Comput 7:349–64 
(2008).  

28. Labate E, Pazzaglia F, Hegarty M. What working 
memory subcomponents are needed in the 
acquisition of survey knowledge? Evidence from 
direction estimation and shortcut tasks. J Environ 
Psychology 37:73–9 (2014).  

29. Fox NC, Warrington EK, Seiffer AL, Agnew SK, 
Rossor MN. Presymptomatic cognitive deficits in 
individuals at risk of familial Alzheimer's disease. A 
longitudinal prospective study. Brain 121:1631-9 
(1998) 

30.  Mendez MF, Mendez MA, Martin R, Smyth KA, 
Whitehouse PJ. Complex visual disturbances in 
Alzheimer's disease. Neurology 40:439-43 (1990) 

31. Possin KL. Visual Spatial Cognition in 
Neurodegenerative Disease. Neurocase 16:466-87 
(2010) 

32. McEvoy LK, Fennema-Notestine C, Roddey JC, 
Hagler DJ, Holland D, Karow DS, et al. Alzheimer 
disease: quantitative structural neuroimaging for 
detection and prediction of clinical and structural 
changes in mild cognitive impairment. Radiology 
251:195–205 (2009).  

33. De Santi S, de Leon MJ, Rusinek H, Convit A, 
Tarshish CY, Roche A, et al. Hippocampal 
formation glucose metabolism and volume losses in 
MCI and AD. Neurobiol Aging 22:529–39 (2001).  

34. Shaw LM, Vanderstichele H, Knapik-Czajka M, 
Clark CM, Aisen PS, Petersen RC, et al. 
Cerebrospinal fluid biomarker signature in 
Alzheimer's disease neuroimaging initiative subjects. 
Ann Neurol 65:403–13 (2009).  

35. Ashburner J, Friston KJ. Voxel-based 
morphometry—the methods. Neuroimage 11: 805-21 
(2000).  

36. Mechelli A, Price CJ, Friston KJ. Voxel-based 
morphometry of the human brain: methods and 
applications. Current Medical Imaging Rev 1:105–
13 (2005).  

37. Fischl B, Dale AM. Measuring the thickness of the 
human cerebral cortex from magnetic resonance 
images. PNAS 97:11050–5 (2000).  

38. Escudero J, Zajicek JP, Ifeachor E, Alzheimer's 
Disease Neuroimaging Initiative. Machine Learning 
classification of MRI features of Alzheimer's disease 
and mild cognitive impairment subjects to reduce the 
sample size in clinical trials. Conf Proc IEEE Eng 
Med Biol Soc 2011:7957–60 (2011).  

39. Sabuncu MR, Konukoglu E, Alzheimer's Disease 
Neuroimaging Initiative. Clinical prediction from 
structural brain MRI scans: a large-scale empirical 
study. Neuroinform 13:31–46 (2015).  

40. Salvatore C, Cerasa A, Battista P, Gilardi MC, 
Quattrone A, Castiglioni I, et al. Magnetic resonance 
imaging biomarkers for the early diagnosis of 
Alzheimer's disease: a machine learning approach. 
Front Neurosci 9:307 (2015). Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555
016/  

41. Beltrachini L, De Marco M, Taylor ZA, Lotjonen J, 
Frangi AF, Venneri A. Integration of Cognitive Tests 
and Resting State fMRI for the Individual 
Identification of Mild Cognitive Impairment. Curr 
Alzheimer Res 12:592–603 (2015).  

42. Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single 
Subject prediction of brain disorders in 
neuroimaging. Promises and pitfalls. Neuroimage 
2016 (in press).  

43. Bron EE, Smits M, van der Flier WM, Vrenken H, 
Barkhof F, Scheltens P, et al. Standardized 
evaluation of algorithms for computer-aided 
diagnosis of dementia based on structural MRI: the 
CADDementia challenge. Neuroimage 111:562–79 
(2015).  

44. Boser BE, Guyon IM, Vapnik VN. A training 
algorithm for optimal margin classifiers. Proceedings 
of the fifth annual workshop on Computational 
learning theory; 1992 July 27-29; Pittsburgh, USA.  

45. Zhang L, Lin X. Some considerations of 
classification for high dimension low-sample size 
data. Stat Methods Med Res 22:537–50 (2013).  

46. Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, 
Noble WS. A statistical framework for genomic data 
fusion. Bioinformatics 20:2626–35 (2004).  



Short Running Title of the Article Journal Name, 2014, Vol. 0, No. 0    11 

47. Schrouff J, Rosa MJ, Rondina JM, Marquand AF, 
Chu C, Ashburner J, et al. PRoNTo: pattern 
recognition for neuroimaging toolbox. Neuroinform 
11:319–37 (2013).  

48. Schrouff J, Monteiro J, Joao Rosa M, Portugal L, 
Phillips C, Mourao-Miranda J. Can we interpret 
linear kernel machine learning models using 
anatomically labelled regions? Organization for 
Human Brain Mapping; 2014 June 8-12; Hamburg, 
Germany. 

49. Schrouff J, Cremers J, Garraux G, Baldassarre L, 
Mourao-Miranda J, Phillips C. Localizing and 
Comparing Weight Maps Generated from Linear 
Kernel Machine Learning Models. International 
Workshop on Pattern Recognition in Neuroimaging; 
2013 June 22-24; Philadelphia, USA. 

50. Rakotomamonjy A, Bach F, Canu S. SimpleMKL. J 
Mach Learn Res 9:2491-521 (2008).  

51. McKhann G, Drachman D, Folstein M, Katzman R, 
Price D, Stadlan EM. Clinical diagnosis of 
Alzheimer“s disease Report of the NINCDS 
ADRDA Work Group* under the auspices of 
Department of Health and Human Services Task 
Force on Alzheimer”s Disease. Neurology 34:939–9  
(1984).  

52. Folstein MF, Folstein SE, McHugh PR. “Mini-
mental state.” J Psychiatr Res 12:189–98 (1975).  

53. Fasano F, Ganazzoli C, Gardini S, Sambataro F, 
Concari L, Caffarra P. SyN based multimodal 
investigation on a small cohort of patients affected 
with Amnesic Mild Cognitive Impairment. 
Proceeding of International Society of Magnetic 
Resonance in Medicine; 2010 May 9-13; Montreal, 
Canada.  

54. Fischl B, Salat DH, van der Kouwe AJW, Makris N, 
Ségonne F, Quinn BT, et al. Sequence-independent 
segmentation of magnetic resonance images. 
NeuroImage 2:S69–84 (2004).  

55. Fischl B, Salat D, Busa E, Albert M, Dieterich M. 
Whole Brain Segmentation Automated Labeling of 
Neuroanatomical Structures in the Human Brain. 
Neuron 33:341-55 (2002).  

56. Dukart J, Schroeter ML, Mueller K, The Alzheimer's 
Disease Neuroimaging Initiative. Age Correction in 
Dementia – Matching to a Healthy Brain. Valdes-
Sosa PA, Valdes-Sosa PA, editors. PLoS ONE 
6:e22193–9 (2011).  

57. Naselaris T, Kay KN, Nishimoto S, Gallant JL. 
Encoding and decoding in fMRI. Neuroimage 
56:400–10 (2011).  

58. Haufe S, Meinecke F, Görgen K, Dähne S, Haynes J-
D, Blankertz B, et al. On the interpretation of weight 
vectors of linear models in multivariate 
neuroimaging. NeuroImage 87:96–110 (2014).  

59. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen 
P, Hänninen T, Laakso MP, et al. Hippocampus and 
entorhinal cortex in mild cognitive impairment and 
early AD. Neurobiol Aging 25:303–10 (2004).  

60. Bozzali M, Filippi M, Magnani G, Cercignani M, 
Franceschi M, Schiatti E, et al. The contribution of 
voxel-based morphometry in staging patients with 
mild cognitive impairment. Neurology 67:453–60 
(2006);  

61. Cardenas VA, Tosun D, Chao LL, Fletcher PT, Joshi 
S, Weiner MW, et al. Voxel-Wise Co-analysis of 
Macro- and Microstructural Brain Alteration in Mild 
Cognitive Impairment and Alzheimer's Disease 
Using Anatomical and Diffusion MRI. J 
Neuroimaging 24:435–43 (2013).  

62. Sheskin DJ Eds. Handbook of Parametric and 
Nonparametric Statistical Procedures. Boca Raton: 
CRC Press (2003).  

 

 
 

 
 
Received: March 20, 2014 Revised: April 16, 2014       Accepted: April 20, 2014 

 
SUPPLEMENTARY MATERIALS 
 
 
SVM 
 
SVMs are a set of frequently used methods for classification and regression in supervised machine learning applications. 
Supervised learning means that the learning is grounded on prior knowledge. For example, in our study we collected 
neuroimaging data (the value of the modGM map in 77715 voxels of grey matter) and cognitive test data (the values of 52 test 
scores, see Methods) for a cohort of 22 participants. For each participant we knew the group they belonged to, thus we worked 
within a “supervised” learning framework. Our goal was to understand if what we learned from the group could be extended 
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(generalised) to other individuals. The generalisation is at the basis of the cross validation procedures. Those procedures learn on 
a training subset of data (in our case on 21 participants) and try to extend the result to a testing subset of data (in our case on 1 
participant). The operation is repeated for all possible combinations of training set and testing sets (in our case 22). Each 
permutation is called fold and each fold supplies a percentage of successes/failures (in our case 100% or 0%). The average across 
all success percentage of all fold permutations represents the prediction accuracy.  

SVM has been shown to be a feasible method to analyse large feature small sample data sets [40]. In fact a standard modGM map 
contains a number of voxels (features) of the order of 100.000 while a classical MRI clinical study only includes few tens of 
subjects. These kinds of dataset are prone to overfitting problems, that is, by using a too complex model to solve a problem, “too 
many parameters to explain few sample data”, the risk is to fit noise, determining a good but low generalisable solution. SVM 
theory lies on the use of so-called Kernels, mathematical entities that are able to increase the dimensionality of the feature space 
used to solve the problem by preserving a low complexity for the model.  

Mathematically, the SVM learning problem consists of determining ߙכ and ܾכ parameters in the following equation:  

 ݂ሺݔሻ ൌ σ ǡୀଵݔሺܭכߙ ሻݔ   [A1]   כܾ

 
where f(x) is a function to be learned on the basis of previous knowledge of l previously collected examples: {xi, yi} with i=1,..,l 
(in our study l=77767, i.e. 52 cognitive test scores plus 77715 modGM map values, see Methods). K represents the chosen kernel 
function. For example, in case of linear Kernel (the one used in the present study) ܭሺݔǡ ᇱሻݔ ൌ σ ݔ ୀଵכ Ԣݔ  ܿ. Each yi can get 
one of two values, i.e. +1 or -1 (corresponding for example to the MCI or HC group).   

In MKL formulation of the learning problem the ܭሺݔǡ ᇱሻ of Eq. A1 is replaced by σݔ ݀ெୀଵ  ǡݔሺܭ  ᇱሻ, being dm (m=1,…,M) theݔ
weights to be determined by optimisation procedure (in our  case M=84, i.e. 81 brain regions plus 3 cognitive scores sub-sets and 
dm are the weights assigned to the 84 associated Kernels and used to assess the contribution to the prediction accuracy of each 
sub-set. 

 

 

Age correction procedure. 
 

The 22 modGM maps were corrected voxel by voxel. Firstly, we evaluated the effect of age on the healthy participants by GLM: 

y_HC(i)=b0(i) + b1(i) x ageHC    [A2] 

where yHC(i) is the vector composed by the 11 uncorrected modGM values in the i-th voxel, ageHC is the vector of the ages of 
the eleven healthy control participants and b0(i) and b1(i) are the two GLM parameters to be estimated for the i-th voxel. Secondly 
we applied voxel by voxel the estimated correction to all the participants scores (including patients): 

corr_yHC(i)=yHC(i) - b1(i) x ageHC  [A3a] 

corr_yMCI(i)=yMCI(i) - b1(i) x ageMCI  [A3b] 

where corr_yHC(i) and corr_yMCI(i) are the corrected 11 elements vectors for the i-th voxel respectively for the control 
participants and for the patients. The same procedure was applied to the cognitive test scores.  

 

In-depth analysis of Results (weights and ER) 

Variability of results through the different cross validation folds, small cohort of participants and overshadowing of some Kernels 
(regions) by others Kernels (regions) containing the same patterns of information (see Ref. 44) are important issues that can be 
explored more in-depth with the MKL approach implemented by the PRoNTo software. The latter issue specifically is a well-
known one in machine learning neuroscientific applications, i.e. it is the reason why this approach cannot easily provide an answer 
to the following general problem: “Given that the information/activity contained in a brain region A is shown to predict a 
clinical/behavioural state B, we want to select the sub-region of A mostly responsible for that clinical/behavioural state”. The 
Kernels (regions) found to have non-zero weights can be assumed to be part of the informative pattern, but it cannot be excluded 
that some 0 weighted Kernels (regions) might also be contributing. To help the identification of those Kernels (regions) that have 
a stable performance among folds (individuals), the PRoNTo software calculates the “Expected Ranking” index (ER) that is a 
measure of how much the Kernel (region) rating in each fold is close to its averaged value across fold (see Ref. 44). If we look 
at the ER scores of the list of regions having non-zero weights (see Supplementary Materials) we find that the “CTS14 objective” 
ER is 0.95. Furthermore, the ranking was found to be 1 for most of the folds (data not reported). This confirms the high reliability 
of the “CTS14 objective” as the sub-set of features driving the classification performance. A similar consistency is found for the 
Brain Stem region, as well as for other brain areas among the most relevant ones (as ranked by weights). “CTS14 self” on the 
contrary, shows a very high ER, thus confirming its lower stability and relevance in classification, as already suggested by its 
ranking and its low weight. While among the first ranked regions we find quite good ER scores, there are more discrepancies in 
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the lower ranked regions between rank/weight and ER, including Hippocampus, left Caudate Nucleus, Putamen, and Thalamus, 
as well as left Amygdala. 

 
 
MRI only feature set results 
 
In the following table we report the results obtained when the MRI data only are analysed. We report for each brain region the 
number of features (N), i.e. number of voxels included in the associated Kernel, the normalised contribution of feature subset in 
classification performance, i.e. its weight (%w), and the Expected Ranking (ER). Data are sorted in decreasing order from 
higher %w to lower %w. 

 

 

 

CTS and TBR Labels 

 

 

N  

Original Data 

 

%w 

 

ER 
 

Brain-Stem  25,73 3622 1,55 

ctx-rh-entorhinal  23,74 248 1,91 

Left-Pallidum  21,59 338 2,41 

ctx-lh-pericalcarine  7,50 286 7,68 

ctx-lh-inferiortemporal  5,37 1709 11,23 

ctx-rh-transversetemporal  4,94 147 9,23 

Right-Caudate  4,35 690 6,73 

ctx-rh-paracentral  1,61 685 37,95 

Left-Thalamus-Proper  1,06 1149 8,86 

ctx-rh-parstriangularis  0,98 536 42,59 

ctx-rh-frontalpole  0,72 83 59,14 

ctx-lh-parstriangularis  0,55 374 27,59 

ctx-lh-paracentral  0,49 522 29,23 

Right-Thalamus-Proper  0,37 1142 13,73 

Right-Amygdala  0,26 221 18,00 

ctx-lh-parsorbitalis  0,15 335 33,41 

ctx-lh-parsopercularis  0,15 751 31,45 

Left-Hippocampus  0,10 592 11,82 

ctx-lh-transversetemporal  0,08 205 44,09 

Left-Amygdala  0,07 194 12,64 

Right-Accumbens-area  0,06 103 19,00 

ctx-rh-temporalpole  0,06 266 73,14 

ctx-rh-

caudalanteriorcingulate  0,04 338 47,77 

ctx-lh-middletemporal  0,02 1663 30,09 

ctx-lh-lateralorbitofrontal  0,00 1167 27,41 

Left-Caudate  0,00 665 10,36 

Left-Putamen  0,00 965 11,32 

Left-Accumbens-area  0,00 93 14,00 

Right-Putamen  0,00 910 15,82 

Right-Pallidum  0,00 306 16,77 

Right-Hippocampus  0,00 593 17,73 

ctx-lh-caudalanteriorcingulate  0,00 311 20,50 

ctx-lh-caudalmiddlefrontal  0,00 1075 21,45 

ctx-lh-cuneus  0,00 453 22,41 
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ctx-lh-entorhinal  0,00 292 23,36 

ctx-lh-fusiform  0,00 1398 24,32 

ctx-lh-inferiorparietal  0,00 1674 25,27 

ctx-lh-isthmuscingulate  0,00 367 26,50 

ctx-lh-lateraloccipital  0,00 1605 27,45 

ctx-lh-lingual  0,00 889 29,32 

ctx-lh-medialorbitofrontal  0,00 555 30,27 

ctx-lh-parahippocampal  0,00 327 32,14 

ctx-lh-postcentral  0,00 1389 36,45 

ctx-lh-posteriorcingulate  0,00 522 37,41 

ctx-lh-precentral  0,00 2158 38,36 

ctx-lh-precuneus  0,00 1265 39,32 

ctx-lh-rostralanteriorcingulate  0,00 400 40,27 

ctx-lh-rostralmiddlefrontal  0,00 1870 41,23 

ctx-lh-superiorfrontal  0,00 3076 42,18 

ctx-lh-superiorparietal  0,00 1584 43,14 

ctx-lh-superiortemporal  0,00 1865 44,09 

ctx-lh-supramarginal  0,00 1475 45,05 

ctx-lh-frontalpole  0,00 66 46,00 

ctx-lh-temporalpole  0,00 239 46,95 

ctx-lh-insula  0,00 1062 48,77 

ctx-rh-caudalmiddlefrontal  0,00 990 50,64 

ctx-rh-cuneus  0,00 493 51,59 

ctx-rh-fusiform  0,00 1411 52,55 

ctx-rh-inferiorparietal  0,00 2139 53,50 

ctx-rh-inferiortemporal  0,00 1463 54,45 

ctx-rh-isthmuscingulate  0,00 357 55,41 

ctx-rh-lateraloccipital  0,00 1515 56,36 

ctx-rh-lateralorbitofrontal  0,00 1060 57,32 

ctx-rh-lingual  0,00 1014 58,27 

ctx-rh-medialorbitofrontal  0,00 626 59,23 

ctx-rh-middletemporal  0,00 1853 60,18 

ctx-rh-parahippocampal  0,00 349 61,14 

ctx-rh-parsopercularis  0,00 677 62,64 

ctx-rh-parsorbitalis  0,00 336 63,59 

ctx-rh-pericalcarine  0,00 333 65,14 

ctx-rh-postcentral  0,00 1268 66,09 

ctx-rh-posteriorcingulate  0,00 646 67,05 

ctx-rh-precentral  0,00 2080 68,00 

ctx-rh-precuneus  0,00 1416 68,95 

ctx-rh-rostralanteriorcingulate  0,00 288 69,91 

ctx-rh-rostralmiddlefrontal  0,00 2004 70,86 

ctx-rh-superiorfrontal  0,00 2786 71,82 

ctx-rh-superiorparietal  0,00 1566 72,77 

ctx-rh-superiortemporal  0,00 1824 73,73 

ctx-rh-supramarginal  0,00 1381 74,68 
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ctx-rh-insula  0,00 1025 77,32 
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Comparison between GLM age corrected and uncorrected results 
 
In the following table, for both original data and age corrected data, we report, for each cognitive test score and true brain region, 
the number of features (N), i.e. number of test scores / number of voxels included in the associated Kernel, the normalised 
contribution of feature subset in classification performance, i.e. its weight (%w), and the Expected Ranking (ER). Data are sorted 
in decreasing order from higher %w to lower %w as assessed in the original data.  
 

 

 

CTS and TBR Labels 

 

 

N  

Original Data 

 

%w 

 

ER 
 

Age Corrected Data 

 

%w 

 

ER 

 
 

CTS14 objective  10 63,62 0,95 65,27 0,95 

ctx-lh-parsopercularis  751 12,28 6,32 13,94 13,09 

ctx-rh-entorhinal  248 8,74 10,14 4,51 26,36 

ctx-lh-pericalcarine  286 8,14 7,86 3,81 16,86 

Brain-Stem  3622 3,97 5,32 0,01 9,55 

Left-Pallidum  338 1,32 7,41 0,69 8,32 

Right-Amygdala  221 0,57 16,27 1,16 15,27 

Right-Putamen  910 0,56 10,27 0,00 15,23 

Right-Caudate  690 0,29 11,73 0,18 13,82 

Right-Thalamus-Proper  1142 0,15 12,32 0,00 13,36 

ctx-rh-caudalmiddlefrontal  990 0,13 49,55 0,00 50,73 

Right-Accumbens-area  103 0,09 17,23 0,06 18,23 

ctx-lh-parsorbitalis  335 0,07 33,23 0,33 34,09 

ctx-lh-transversetemporal  205 0,04 44,73 0,00 47,86 

CTS14 self-evaluative  4 0,04 75,68 0,12 79,68 

Left-Thalamus-Proper  1149 0,00 6,32 0,29 5,45 

Left-Caudate  665 0,00 7,27 0,00 6,73 

Left-Putamen  965 0,00 8,23 0,00 7,68 

Left-Hippocampus  592 0,00 10,05 0,00 10,50 

Left-Amygdala  194 0,00 11,00 0,00 11,45 

Left-Accumbens-area  93 0,00 11,95 0,00 12,41 

Right-Pallidum  306 0,00 15,05 0,00 16,18 

Right-Hippocampus  593 0,00 16,00 0,00 17,14 

ctx-lh-

caudalanteriorcingulate  

311 0,00 18,77 0,00 19,77 

ctx-lh-caudalmiddlefrontal  1075 0,00 19,73 0,00 20,73 

ctx-lh-cuneus  453 0,00 20,68 0,00 21,68 

ctx-lh-entorhinal  292 0,00 21,64 0,00 22,64 

ctx-lh-fusiform  1398 0,00 22,59 0,00 23,59 

ctx-lh-inferiorparietal  1674 0,00 23,55 0,00 24,55 

ctx-lh-inferiortemporal  1709 0,00 24,50 4,19 15,95 

ctx-lh-isthmuscingulate  367 0,00 25,45 0,00 26,09 

ctx-lh-lateraloccipital  1605 0,00 26,41 0,00 27,05 

ctx-lh-lateralorbitofrontal  1167 0,00 27,36 0,00 28,00 

ctx-lh-lingual  889 0,00 28,32 0,00 28,95 

ctx-lh-medialorbitofrontal  555 0,00 29,27 0,00 29,91 

ctx-lh-middletemporal  1663 0,00 30,23 0,00 30,86 

ctx-lh-parahippocampal  327 0,00 31,18 0,00 31,82 
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ctx-lh-paracentral  522 0,00 32,14 0,00 32,77 

ctx-lh-parstriangularis  374 0,00 34,18 0,00 35,05 

ctx-lh-postcentral  1389 0,00 35,27 0,00 36,41 

ctx-lh-posteriorcingulate  522 0,00 36,23 0,00 37,36 

ctx-lh-precentral  2158 0,00 37,18 0,00 38,32 

ctx-lh-precuneus  1265 0,00 38,14 0,00 39,27 

ctx-lh-

rostralanteriorcingulate  

400 0,00 39,09 0,00 40,23 

ctx-lh-rostralmiddlefrontal  1870 0,00 40,05 0,00 41,18 

ctx-lh-superiorfrontal  3076 0,00 41,00 0,00 42,14 

ctx-lh-superiorparietal  1584 0,00 41,95 0,00 43,09 

ctx-lh-superiortemporal  1865 0,00 42,91 0,00 44,05 

ctx-lh-supramarginal  1475 0,00 43,86 0,00 45,00 

ctx-lh-frontalpole  66 0,00 44,82 0,00 45,95 

ctx-lh-temporalpole  239 0,00 45,77 0,00 46,91 

ctx-lh-insula  1062 0,00 47,64 0,00 48,82 

ctx-rh-

caudalanteriorcingulate  

338 0,00 48,59 0,00 49,77 

ctx-rh-cuneus  493 0,00 50,50 0,00 51,68 

ctx-rh-fusiform  1411 0,00 51,59 0,00 53,09 

ctx-rh-inferiorparietal  2139 0,00 52,55 0,00 54,05 

ctx-rh-inferiortemporal  1463 0,00 53,50 0,00 55,00 

ctx-rh-isthmuscingulate  357 0,00 54,45 0,00 55,95 

ctx-rh-lateraloccipital  1515 0,00 55,41 0,00 56,91 

ctx-rh-lateralorbitofrontal  1060 0,00 56,36 0,00 57,86 

ctx-rh-lingual  1014 0,00 57,32 0,00 58,82 

ctx-rh-medialorbitofrontal  626 0,00 58,27 0,00 59,77 

ctx-rh-middletemporal  1853 0,00 59,23 0,00 60,73 

ctx-rh-parahippocampal  349 0,00 60,18 0,61 45,55 

ctx-rh-paracentral  685 0,00 61,14 0,00 62,36 

ctx-rh-parsopercularis  677 0,00 62,09 2,27 35,55 

ctx-rh-parsorbitalis  336 0,00 63,05 0,00 63,82 

ctx-rh-parstriangularis  536 0,00 64,00 1,48 44,86 

ctx-rh-pericalcarine  333 0,00 64,95 0,00 65,41 

ctx-rh-postcentral  1268 0,00 65,91 0,00 66,36 

ctx-rh-posteriorcingulate  646 0,00 66,86 0,00 67,32 

ctx-rh-precentral  2080 0,00 67,82 0,00 68,27 

ctx-rh-precuneus  1416 0,00 68,77 0,00 69,23 

ctx-rh-

rostralanteriorcingulate  

288 0,00 69,73 0,00 70,18 

ctx-rh-rostralmiddlefrontal  2004 0,00 70,68 0,00 71,14 

ctx-rh-superiorfrontal  2786 0,00 71,64 0,00 72,09 

ctx-rh-superiorparietal  1566 0,00 72,59 0,00 73,05 

ctx-rh-superiortemporal  1824 0,00 73,55 0,00 74,00 

ctx-rh-supramarginal  1381 0,00 74,50 0,00 74,95 

ctx-rh-frontalpole  83 0,00 75,45 0,00 75,91 

ctx-rh-temporalpole  266 0,00 76,41 0,00 76,86 
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ctx-rh-transversetemporal  147 0,00 77,36 0,05 74,27 

ctx-rh-insula  1025 0,00 78,32 0,00 78,73 

CTS38 38 0,00 80,18 1,03 45,09 
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Figure 1. For each features subset (81 FreeSurfer extracted cerebral structures and three sets of CTS) the normalised weight (%w) assigned by 
the MKL optimization procedure to the associated Kernel is reported, as well as the Expected Ranking (ER) and the Number of features (N) 
included in the subset. The feature sets for which the weight was different from zero are highlighted in red. Fifteen axial brain slices of the study 
population template are also shown, with superimposed cyan overlay on structural scans representing the cerebral structures included in the 
analysis but excluded by the optimisation procedure (zero associated Kernel weight), and superimposed red overlay representing the structures 
with non-zero associated Kernel weight.  
 

 

 

 

 


