850 research outputs found

    Importance of second-order piezoelectric effects in zincblende semiconductors

    Full text link
    We show that the piezoelectric effect that describes the emergence of an electric field in response to a crystal deformation in III-V semiconductors such as GaAs and InAs has strong contributions from second-order effects that have been neglected so far. We calculate the second-order piezoelectric tensors using density functional theory and obtain the piezoelectric field for [111]-oriented Inx_xGa1x_{1-x}As quantum wells of realistic dimensions and concentration xx. We find that the linear and the quadratic piezoelectric coefficients have the opposite effect on the field, and for large strains the quadratic terms even dominate. Thus, the piezoelectric field turns out to be a rare example of a physical quantity for which the first- and second-order contributions are of comparable magnitude.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let

    Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics

    Get PDF
    Chemically modified (K0.5Na0.5)NbO3 compositions with finely tuned polymorphic phase boundaries (PPBs) have shown excellent piezoelectric properties. The evolution of the domain morphology and crystal structure under applied electric fields of a model material, 0.948(K0.5Na0.5)NbO3-0.052LiSbO3, was directly visualized using in situ transmission electron microscopy. The in situ observations correlate extremely well with measurements of the electromechanical response on bulk samples. It is found that the origin of the excellent piezoelectric performance in this lead-free composition is due to a tilted monoclinic phase that emerges from the PPB when poling fields greater than 14 kV/cm are applied. 2013 AIP Publishing LLC

    Arrival directions of cosmic rays of E .4 EeV

    Get PDF
    The anisotropy of cosmic rays observed by the Utah Fly's Eye detector has been studied. Emphasis has been placed on examining distributions of events in galactic coordinates. No statistically significant departure from isotropy has been observed for energies greater than 0.4 EeV (1 EeV = 10 to the 18th power eV). Results of the standard harmonic analysis in right ascension are also presented

    Identification of Fibroblasts as a Major Site of Albumin Catabolism in Peripheral Tissues

    Get PDF
    Rat serum albumin has been labeledw ith dilactitollZ5I- tyramine,( 12‘I-DLT) a radioactive tracer which remains entrappedw ithin lysosomes following cellular uptake and degradation of the carrier protein. Similar kinetics of clearance from the rat circulation were observed for albumin labeled conventionally with lZsI or 12‘I-DLT-albumin, both proteinhsa ving circulating half-lives of -2.2 days. In contrast, the recovery of whole body radioactivity had half-lives of -2.2 and 5.1 days, respectively, for the two protein preparations, indicating substantial retention of degradation products derived from catabolism of ”‘I-DLT-albumin. Measurement of total and acid-soluble radioactivity in tissues 2 or 4 days after injection of ”‘1-DLTalbumin revealed that skin and muscle accounted for the largest fraction( 50-60%)o f degradation products in the body. Fibroblaswtse re identified by autoradiography as the major cell type containing radioactive degradation products in skin and muscle. Fibroblasts were isolated from skin by collagenase digestion, followed by density gradient centrifugation. The amount of acid-soluble radioactivity recovered in these cells was in excellent agreement with that predicted based on acid precipitation of solubilized wholsek in preparations. These studies demonstrate for the first time that fibroblasts are a major cell type involved in the degradation of albuminin vivo

    Long-term stability of TES satellite radiance measurements

    Get PDF
    The utilization of Tropospheric Emission Spectrometer (TES) Level 2 (L2) retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B) radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO) profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST) are used as input to the Optimal Spectral Sampling (OSS) radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view) and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations) in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2), particularly well-mixed species such as carbon dioxide and methane

    High temperature piezoelectric properties of flux-grown α-GeO 2 single crystal

    Get PDF
    International audienceThe temperature-dependence of the piezoelectric properties of trigonal -GeO2 single-crystals obtained by the high-temperature flux method was measured by the resonance technique of the electrical impedance in the 20°C-600°C range. To approach the values of the two independent piezoelectric coefficients d11 and d14, we first measured as a function of temperature the elastic coefficients S11, S14 and S66 and the dielectric permittivity 11 which are involved in the coupling coefficient k of both the thickness shear mode and the transverse mode. A Y-cut plate with a simple +45°-rotation ((YXtwl) +45°/0°/0°) was used to measure the coupling coefficient of the thickness shear mode, and two X-turned plates ((XYtwl) +45°/0°/0° and (XYtwl)-45°/0°/0°) were prepared to characterize the coupling coefficient of two transverse modes. From the whole experimental measurements, the piezoelectric coefficients of -GeO2 were calculated up to 600 °C. They show that this crystal is one of the most efficient in regard of the -quartz-like family at room temperature, and that its thermal comportment retains large piezoelectric properties up to 600°C

    Dynamic friction force in a carbon peapod oscillator

    Get PDF
    We investigate a new generation of fullerene nano-oscillators: a single-walled carbon nanotube with one buckyball inside with an operating frequency in the tens-of-gigahertz range. A quantitative characterization of energy dissipation channels in the peapod pair has been performed via molecular dynamics simulation. Edge effects are found to the dominant cause of dynamic friction in the carbon-peapod oscillators. A comparative study on energy dissipation also reveals significant impact of temperature and impulse velocity on the frictional force.Comment: 17 pages, 3 fig., 1 tabl

    Piezoelectricity: Quantized Charge Transport Driven by Adiabatic Deformations

    Get PDF
    We study the (zero temperature) quantum piezoelectric response of Harper-like models with broken inversion symmetry. The charge transport in these models is related to topological invariants (Chern numbers). We show that there are arbitrarily small periodic modulations of the atomic positions that lead to nonzero charge transport for the electrons.Comment: Latex, letter. Replaced version with minor change in style. 1 fi

    Superdipole Liquid Scenario for the Dielectric Primary Relaxation in Supercooled Polar liquids

    Full text link
    We propose a dynamic structure of coupled dynamic molecular strings for supercooled small polar molecule liquids and accordingly we obtain the Hamiltonian of the rotational degrees of freedom of the system. From the Hamiltonian, the strongly correlated supercooled polar liquid state is renormalized to a normal superdipole (SD) liquid state. This scenario describes the following main features of the primary or a-relaxation dynamics in supercooled polar liquids: (1) the average relaxation time evolves from a high temperature Arrhenius to a low temperature non-Arrhenius or super-Arrhenius behavior; (2) the relaxation function crosses over from the high temperature exponential to low temperature non-exponential form; and (3) the temperature dependence of the relaxation strength shows non-Curie features. According to the present model, the crossover phenomena of the first two characteristics arise from the transition between the superdipole gas and the superdipole liquid. The model predictions are quantitatively compared with the experimental results of glycerol, a typical glass-former.Comment: 40 pages, 3 figure
    corecore