We show that the piezoelectric effect that describes the emergence of an
electric field in response to a crystal deformation in III-V semiconductors
such as GaAs and InAs has strong contributions from second-order effects that
have been neglected so far. We calculate the second-order piezoelectric tensors
using density functional theory and obtain the piezoelectric field for
[111]-oriented InxGa1−xAs quantum wells of realistic dimensions and
concentration x. We find that the linear and the quadratic piezoelectric
coefficients have the opposite effect on the field, and for large strains the
quadratic terms even dominate. Thus, the piezoelectric field turns out to be a
rare example of a physical quantity for which the first- and second-order
contributions are of comparable magnitude.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let