54 research outputs found
Origins of Photoluminescence Decay Kinetics in CdTe Colloidal Quantum Dots
Recent experimental studies have identified at least two nonradiative components in the fluorescence decay of solutions of CdTe colloidal quantum dots (CQDs). The lifetimes reported by different groups, however, differed by orders of magnitude, raising the question of whether different types of traps were at play in the different samples and experimental conditions and even whether different types of charge carriers were involved in the different trapping processes. Considering that the use of these nanomaterials in biology, optoelectronics, photonics, and photovoltaics is becoming widespread, such a gap in our understanding of carrier dynamics in these systems needs addressing. This is what we do here. Using the state-of-the-art atomistic semiempirical pseudopotential method, we calculate trapping times and nonradiative population decay curves for different CQD sizes considering up to 268 surface traps. We show that the seemingly discrepant experimental results are consistent with the trapping of the hole at unsaturated Te bonds on the dot surface in the presence of different dielectric environments. In particular, the observed increase in the trapping times following air exposure is attributed to the formation of an oxide shell on the dot surface, which increases the dielectric constant of the dot environment. Two types of traps are identified, depending on whether the unsaturated bond is single (type I) or part of a pair of dangling bonds on the same Te atom (type II). The energy landscape relative to transitions to these traps is found to be markedly different in the two cases. As a consequence, the trapping times associated with the different types of traps exhibit a strikingly contrasting sensitivity to variations in the dot environment. Based on these characteristics, we predict the presence of a sub-nanosecond component in all photoluminescence decay curves of CdTe CQDs in the size range considered here if both trap types are present. The absence of such a component is attributed to the suppression of type I traps
Augmenting the Eye of the Beholder: Exploring the Strategic Potential of Augmented Reality to Enhance Online Service Experiences
Driven by the proliferation of augmented reality (AR) technologies, many firms are pursuing a strategy of service augmentation to enhance customers’ online service experiences. Drawing on situated cognition theory, the authors show that AR - based service augmentation enhances customer value perceptions by simultaneously providing simulated physical control and environmental embedding. The resulting authentic situated experience, manifested in a feeling of spatial presence, funct ions as a mediator and also predicts customer decision comfort. Furthermore, the effect of spatial presence on utilitarian value perceptions is greater for customers who are disposed toward verbal rather than visual information processing, and the positive effect on decision comfort is attenuated by customers’ privacy concerns
DOUBLE-OUTPUT INDUCTION GENERATOR OPERATING AT SUBSYNCHRONOUS AND SUPERSYNCHRONOUS SPEEDS - STEADY-STATE PERFORMANCE OPTIMIZATION AND WIND-ENERGY RECOVERY
The paper covers the steady-state analysis of a wound-rotor induction generator operated at varying shaft speeds in the subsynchronous and supersynchronous regions, by control of both the magnitude and direction of slip power. A modified equivalent circuit is used in the analyses in which core losses and harmonics are ignored. The resulting nonlinear algebraic equations are solved numerically. An optimum control strategy, which maximises the total electrical power output of the double output induction generator is determined, and theoretical results are verified experimentally with particular emphasis on the system including naturally commutated convertors. The limitations of naturally commutated convertor circuits and their effects on the output power characteristic of the system are also discussed. This system shows considerable advantage in the field of wind-energy conversion. Its performance is optimised on the basis of annual energy production by calculating optimum values of gear ratio and generator size for the given turbine characteristic and site wind regime. Also, a comparison is made among optimised versions of alternative induction generator schemes used in wind-energy conversion systems, on the bases of annual energy production and transfer characteristic for the same site and turbine
COMMUTATION ANGLE ANALYSIS OF A DOUBLE OUTPUT INDUCTION GENERATOR OPERATING IN SUB-SYNCHRONOUS AND SUPER-SYNCHRONOUS MODES
A rigourous performance analysis of the double autpt indoction generator system with two controlled convaters hs been carried out including the effects of both the rotor side amvukr’s commutation an& and harmonics as well as the supply side converter’s harmonics. This is achieved by means of the hybrid induction machine model which allows for the changing states of conduction of the rotor side converter’s thyristors. The variations in overlapping angle of the rotor side convertex is obtained for a wide range of shaft speeds and for various firing delay angles
- …