31 research outputs found

    Redundant or separate entities?—roles of Twist1 and Twist2 as molecular switches during gene transcription

    Get PDF
    Twist1 and Twist2 are highly conserved members of the Twist subfamily of bHLH proteins responsible for the transcriptional regulation of the developmental programs in mesenchymal cell lineages. The regulation of such processes requires that Twist1 and Twist2 function as molecular switches to activate and repress target genes by employing several direct and indirect mechanisms. Modes of action by these proteins include direct DNA binding to conserved E-box sequences and recruitment of coactivators or repressors, sequestration of E-protein modulators, and interruption of proper activator/repressor function through protein–protein interactions. Regulatory outcomes of Twist1 and Twist2 are themselves controlled by spatial-temporal expression, phosphoregulation, dimer choice and cellular localization. Although these two proteins are highly conserved and exhibit similar functions in vitro, emerging literature have demonstrated different roles in vivo. The involvement of Twist1 and Twist2 in a broad spectrum of regulatory pathways highlights the importance of understanding their roles in normal development, homeostasis and disease. Here we focus on the mechanistic models of transcriptional regulation and summarize the similarities and differences between Twist1 and Twist2 in the context of myogenesis, osteogenesis, immune system development and cancer

    Impact of biological agents on postsurgical complications in inflammatory bowel disease: A multicentre study of Geteccu

    Get PDF
    Background: The impact of biologics on the risk of postoperative complications (PC) in inflammatory bowel disease (IBD) is still an ongoing debate. This lack of evidence is more relevant for ustekinumab and vedolizumab. Aims: To evaluate the impact of biologics on the risk of PC. Methods: A retrospective study was performed in 37 centres. Patients treated with biologics within 12 weeks before surgery were considered “exposed”. The impact of the exposure on the risk of 30-day PC and the risk of infections was assessed by logistic regression and propensity score-matched analysis. Results: A total of 1535 surgeries were performed on 1370 patients. Of them, 711 surgeries were conducted in the exposed cohort (584 anti-TNF, 58 vedolizumab and 69 ustekinumab). In the multivariate analysis, male gender (OR: 1.5; 95% CI: 1.2–2.0), urgent surgery (OR: 1.6; 95% CI: 1.2–2.2), laparotomy approach (OR: 1.5; 95% CI: 1.1–1.9) and severe anaemia (OR: 1.8; 95% CI: 1.3–2.6) had higher risk of PC, while academic hospitals had significantly lower risk. Exposure to biologics (either anti-TNF, vedolizumab or ustekinumab) did not increase the risk of PC (OR: 1.2; 95% CI: 0.97–1.58), although it could be a risk factor for postoperative infections (OR 1.5; 95% CI: 1.03–2.27). Conclusions: Preoperative administration of biologics does not seem to be a risk factor for overall PC, although it may be so for postoperative infections

    Anti-tumour necrosis factor discontinuation in inflammatory bowel disease patients in remission: study protocol of a prospective, multicentre, randomized clinical trial

    Get PDF
    Background: Patients with inflammatory bowel disease who achieve remission with anti-tumour necrosis factor (anti-TNF) drugs may have treatment withdrawn due to safety concerns and cost considerations, but there is a lack of prospective, controlled data investigating this strategy. The primary study aim is to compare the rates of clinical remission at 1?year in patients who discontinue anti-TNF treatment versus those who continue treatment. Methods: This is an ongoing, prospective, double-blind, multicentre, randomized, placebo-controlled study in patients with Crohn?s disease or ulcerative colitis who have achieved clinical remission for ?6?months with an anti-TNF treatment and an immunosuppressant. Patients are being randomized 1:1 to discontinue anti-TNF therapy or continue therapy. Randomization stratifies patients by the type of inflammatory bowel disease and drug (infliximab versus adalimumab) at study inclusion. The primary endpoint of the study is sustained clinical remission at 1?year. Other endpoints include endoscopic and radiological activity, patient-reported outcomes (quality of life, work productivity), safety and predictive factors for relapse. The required sample size is 194 patients. In addition to the main analysis (discontinuation versus continuation), subanalyses will include stratification by type of inflammatory bowel disease, phenotype and previous treatment. Biological samples will be obtained to identify factors predictive of relapse after treatment withdrawal. Results: Enrolment began in 2016, and the study is expected to end in 2020. Conclusions: This study will contribute prospective, controlled data on outcomes and predictors of relapse in patients with inflammatory bowel disease after withdrawal of anti-TNF agents following achievement of clinical remission. Clinical trial reference number: EudraCT 2015-001410-1

    Dysregulation of Macrophage-Secreted Cathepsin B Contributes to HIV-1-Linked Neuronal Apoptosis

    Get PDF
    Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1ADA infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    Matters Arising From: COVID-19 Host Genetics Initiative. Nature https://doi.org/10.1038/s41586-021-03767-x (2021)Data availability: Summary statistics generated by the COVID-19 HGI are available online, including per-ancestry summary statistics for African, admixed American, East Asian, European and South Asian ancestries (https://www.covid19hg.org/results/r7/). The analyses described here used the data release 7. If available, individual-level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale laboratory (http://www.nealelab.is/uk-biobank/), the Finucane laboratory (https://www.finucanelab.org), the FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results) and the eQTL catalogue release 3 (http://www.ebi.ac.uk/eqtl/).Code availability: The code for summary statistics lift-over, the projection PCA pipeline including precomputed loadings and meta-analyses (https://github.com/covid19-hg/); for heritability estimation (https://github.com/AndrewsLabUCSF/COVID19_heritability); for Mendelian randomization and genetic correlation (https://github.com/marcoralab/MRcovid); and subtype analyses (https://github.com/mjpirinen/covid19-hgi_subtypes) are available at GitHub.Reporting summary: Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article online at: https://www.nature.com/articles/s41586-023-06355-3#MOESM2 .Supplementary information is available online at: https://www.nature.com/articles/s41586-023-06355-3#Sec4 .Copyright © The Author(s) 2023. Investigating the role of host genetic factors in COVID-19 severity and susceptibility can inform our understanding of the underlying biological mechanisms that influence adverse outcomes and drug development1,2. Here we present a second updated genome-wide association study (GWAS) on COVID-19 severity and infection susceptibility to SARS-CoV-2 from the COVID-19 Host Genetic Initiative (data release 7). We performed a meta-analysis of up to 219,692 cases and over 3 million controls, identifying 51 distinct genome-wide significant loci—adding 28 loci from the previous data release2. The increased number of candidate genes at the identified loci helped to map three major biological pathways that are involved in susceptibility and severity: viral entry, airway defence in mucus and type I interferon

    Mapping the human genetic architecture of COVID-19

    Get PDF
    Matters Arising to this article was published on 03 August 2022, available online at: https://doi.org/10.1038/s41586-022-04826-7 . A second Matters Arising to this article was published on 06 September 2023, available online at: https://doi.org/10.1038/s41586-023-06355-3 .Data availability: Summary statistics generated by the COVID-19 HGI are available at https://www.covid19hg.org/results/r5/ and are available in the GWAS Catalog (study code GCST011074). The analyses described here include the freeze-5 data. COVID-19 HGI continues to regularly release new data freezes. Summary statistics for non-European ancestry samples are not currently available due to the small individual sample sizes of these groups, but results for lead variants of 13 loci are reported in Supplementary Table 3. Individual level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale lab (https://www.nealelab.is/uk-biobank/), Finucane lab (https://www.finucanelab.org), the FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results) and the eQTL catalogue release 3 (https://www.ebi.ac.uk/eqtl/).Code availability: The code for summary statistics lift-over, the projection PCA pipeline including precomputed loadings and meta-analyses are available on GitHub (https://github.com/covid19-hg/) and the code for the Mendelian randomization and genetic correlation pipeline is available on GitHub at https://github.com/marcoralab/MRcovid.Reporting summary: Further information on research design is available in the Nature Research Reporting Summary linked to this paper online at: https://www.nature.com/articles/s41586-021-03767-x#MOESM2 .Supplementary information is available onlne at: https://www.nature.com/articles/s41586-021-03767-x#Sec24 .Extended data figures and tables are available online at: https://www.nature.com/articles/s41586-021-03767-x#Sec23 .Copyright © The Author(s) 2021. The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19(1,2), host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases(3-7). They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.Radiolog
    corecore