75 research outputs found

    Acromioclavicular joint dislocation: a comparative biomechanical study of the palmaris-longus tendon graft reconstruction with other augmentative methods in cadaveric models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acromioclavicular injuries are common in sports medicine. Surgical intervention is generally advocated for chronic instability of Rockwood grade III and more severe injuries. Various methods of coracoclavicular ligament reconstruction and augmentation have been described. The objective of this study is to compare the biomechanical properties of a novel palmaris-longus tendon reconstruction with those of the native AC+CC ligaments, the modified Weaver-Dunn reconstruction, the ACJ capsuloligamentous complex repair, screw and clavicle hook plate augmentation.</p> <p>Hypothesis</p> <p>There is no difference, biomechanically, amongst the various reconstruction and augmentative methods.</p> <p>Study Design</p> <p>Controlled laboratory cadaveric study.</p> <p>Methods</p> <p>54 cadaveric native (acromioclavicular and coracoclavicular) ligaments were tested using the Instron machine. Superior loading was performed in the 6 groups: 1) in the intact states, 2) after modified Weaver-Dunn reconstruction (WD), 3) after modified Weaver-Dunn reconstruction with acromioclavicular joint capsuloligamentous repair (WD.ACJ), 4) after modified Weaver-Dunn reconstruction with clavicular hook plate augmentation (WD.CP) or 5) after modified Weaver-Dunn reconstruction with coracoclavicular screw augmentation (WD.BS) and 6) after modified Weaver-Dunn reconstruction with mersilene tape-palmaris-longus tendon graft reconstruction (WD. PLmt). Posterior-anterior (horizontal) loading was similarly performed in all groups, except groups 4 and 5. The respective failure loads, stiffnesses, displacements at failure and modes of failure were recorded. Data analysis was carried out using a one-way ANOVA, with Student's unpaired t-test for unpaired data (S-PLUS statistical package 2005).</p> <p>Results</p> <p>Native ligaments were the strongest and stiffest when compared to other modes of reconstruction and augmentation except coracoclavicular screw, in both posterior-anterior and superior directions (p < 0.005).</p> <p>WD.ACJ provided additional posterior-anterior (P = 0. 039) but not superior (p = 0.250) stability when compared to WD alone.</p> <p>WD+PLmt, in loads and stiffness at failure superiorly, was similar to WD+CP (p = 0.066). WD+PLmt, in loads and stiffness at failure postero-anteriorly, was similar to WD+ACJ (p = 0.084).</p> <p>Superiorly, WD+CP had similar strength as WD+BS (p = 0.057), but it was less stiff (p < 0.005).</p> <p>Conclusions and Clinical Relevance</p> <p>Modified Weaver-Dunn procedure must always be supplemented with acromioclavicular capsuloligamentous repair to increase posterior-anterior stability. Palmaris-Longus tendon graft provides both additional superior and posterior-anterior stability when used for acromioclavicular capsuloligamentous reconstruction. It is a good alternative to clavicle hook plate in acromioclavicular dislocation.</p

    Reproductive aspects of the oceanic whitetip shark, Carcharhinus longimanus (Elasmobranchii: Carcharhinidae), in the equatorial and southwestern Atlantic Ocean

    Get PDF
    The present study sought to study the reproductive biology of the oceanic whitetip shark, Carcharhinus longimanus, in the equatorial and southwestern Atlantic Ocean. A total of 234 specimens were collected as bycatch during pelagic longline fisheries targeting tunas and swordfish, between December 2003 and December 2010. The fishing area was located between latitudes 10N and 35S and longitudes 3E and 40W. Of the 234 individuals sampled, 118 were females (with sizes ranging from 81 to 227 cm TL, total length) and 116 males (ranging from 80 to 242 cm TL). The reproductive stages of the females were classed as immature, mature, preovulatory and pregnant, while males were divided into immature, maturing and mature. The size at maturity for females was estimated at 170.0 cm TL, while that for males was between 170.0 and 190.0 cm TL. Ovarian fecundity ranged from 1 to 10 follicles and uterine fecundity from 1 to 10 embryos. The reproductive cycle of this species is most likely biennial, with parturition occurring once every two years.info:eu-repo/semantics/publishedVersio

    Occurrence of an Intersexual Blacktip Shark in the Northern Gulf of Mexico, with Notes on the Standardization of Classifications for This Condition in Elasmobranchs

    Get PDF
    An intersexual Blacktip Shark Carcharhinus limbatus with a testis, immature female reproductive tracts (embedded), and claspers was caught in the Gulf of Mexico. Histology of the single gonad revealed that all stages of spermatogenesis were occurring; however, the absence of ovaries and a male duct system suggests that neither sex would have been functional in this individual. Intersexuality has been reported in 17 families and 36 species of elasmobranchs. The degree to which the different sexes are present in a given individual is often difficult to categorize by normal hermaphroditic standards, as this is typically an anomalous presentation in elasmobranchs. Therefore, this report provides three categories for classification (basic, incomplete, and complete intersexuality) to standardize terminology and allow for more precise comparisons to be made among elasmobranch examples. Basic intersexuals have gonadal tissue of only one sex and a combination of other male and female characters with neither or only one sex being complete. Incomplete intersexuals have gonadal tissue of both sexes and a combination of other male and female characters; however, neither or only one sex is complete. Complete intersexuals have claspers as well as gonadal tissue and tracts for both sexes. The majority of the reported intersexual elasmobranchs, including the shark described here, are basic intersexuals

    Shape Variation in Aterian Tanged Tools and the Origins of Projectile Technology: A Morphometric Perspective on Stone Tool Function

    Get PDF
    BACKGROUND: Recent findings suggest that the North African Middle Stone Age technocomplex known as the Aterian is both much older than previously assumed, and certainly associated with fossils exhibiting anatomically modern human morphology and behavior. The Aterian is defined by the presence of 'tanged' or 'stemmed' tools, which have been widely assumed to be among the earliest projectile weapon tips. The present study systematically investigates morphological variation in a large sample of Aterian tools to test the hypothesis that these tools were hafted and/or used as projectile weapons. METHODOLOGY/PRINCIPAL FINDINGS: Both classical morphometrics and Elliptical Fourier Analysis of tool outlines are used to show that the shape variation in the sample exhibits size-dependent patterns consistent with a reduction of the tools from the tip down, with the tang remaining intact. Additionally, the process of reduction led to increasing side-to-side asymmetries as the tools got smaller. Finally, a comparison of shape-change trajectories between Aterian tools and Late Paleolithic arrowheads from the North German site of Stellmoor reveal significant differences in terms of the amount and location of the variation. CONCLUSIONS/SIGNIFICANCE: The patterns of size-dependent shape variation strongly support the functional hypothesis of Aterian tools as hafted knives or scrapers with alternating active edges, rather than as weapon tips. Nevertheless, the same morphological patterns are interpreted as one of the earliest evidences for a hafting modification, and for the successful combination of different raw materials (haft and stone tip) into one implement, in itself an important achievement in the evolution of hominin technologies

    Tree detection with low-cost 3D sensors for autonomous navigation in orchards

    No full text
    International audienceThis paper deals with autonomous farming and with the autonomous navigation of an agricultural robot in orchards. These latter are typical semi-structured environments where the dense canopy prevents from using GPS signal and embedded sensors are often preferred to localize the vehicle. To move safely in such environments, it is necessary to provide the robot the ability of detecting and localizing trees. This paper focuses on this problem. It presents a low cost but efficient vision-based system allowing to detect accurately, quickly and robustly the trees. It is made of four stereo cameras which provide a point cloud characterizing the environment. The key idea is to find the tree trunks by detecting their shadows which are materialized by concavities in the obtained point cloud. In this way, branches and leaves are not taken into account, improving the detection robustness and therefore the navigation strategy. The method has been implemented using ROS and validated using data sequences taken in several different orchards. The obtained results definitely validate the approach and its performances show that the processing time (around 1ms) is sufficiently short for the data to be used at the control level. A comparison with other approaches from the literature is also provided

    Design of a Sensor-based Controller Performing U-turn to Navigate in Orchards

    No full text
    International audienceIn this work, the problem of designing sensor-based controllers allowing to navigate in orchards is considered. The navigation techniques classically used in the literature rely on path following using metric maps and metric localization obtained from onboard sensors. However, it appears promising to use sensor-based approaches together with topological maps for two main reasons: first, the environment nature is rather changing and second, only high-level information are sufficient to describe it. One of the key maneuver when navigating through an orchard is the u-turn which must be performed at the end of each row to reach the next one. This maneuver is generally performed using only dead reckoning because of the lack of dedicated sensory data. In this paper, we propose two sensor-based control laws allowing to perform u-turns, improving the performance quality. They allow following particular spirals which are defined from laser rangefinder data and adapted to realize the desired maneuver. Their stability is studied and their performances are thoroughly examined. Finally, they are embedded in a complete navigation strategy to show their efficiency in our agricultural contex

    Implementation on a harvesting robot of a sensor-based controller performing a u-turn

    No full text
    International audienceIn this paper we investigate the navigation of a harvesting robot using sensor-based controllers in an orchard. More precisely, we focus our work on the particular u-turn maneuver which allows the mechanical system to move from the current row to the next one. By using sensor-based controllers, the control law is expressed in the sensor space, and the robot does not have to localize itself nor use a global map of the field. The navigation task can then be realized more accurately. This paper reports the implementation of two generic sensor-based controllers. These controllers allow a differential robot to follow spirals around a given point of interest. In this work, we adapt these two controllers to our specific robot (car-like system), before detailing the ROS implementation architecture. Both simulations and experimental results show the interest and the efficiency of our controllers to perform u-turns in an orchard
    corecore