1,983 research outputs found

    A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times

    Full text link
    The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.Comment: 21 pages, 11 figures. v2 matches published version: improved presentation (including title, abstract and references), results and conclusions unchange

    Neutrinoless double-beta decay. A brief review

    Full text link
    In this brief review we discuss the generation of Majorana neutrino masses through the see-saw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of theta_13, and the interpretation of the results of neutrinoless double-beta decay experiments.Comment: 22 page

    Resolving parameter degeneracies in long-baseline experiments by atmospheric neutrino data

    Full text link
    In this work we show that the physics reach of a long-baseline (LBL) neutrino oscillation experiment based on a superbeam and a megaton water Cherenkov detector can be significantly increased if the LBL data are combined with data from atmospheric neutrinos (ATM) provided by the same detector. ATM data are sensitive to the octant of θ23\theta_{23} and to the type of the neutrino mass hierarchy, mainly through three-flavor effects in e-like events. This allows to resolve the so-called θ23\theta_{23}- and sign(Δm312\Delta m^2_{31})-parameter degeneracies in LBL data. As a consequence it becomes possible to distinguish the normal from the inverted neutrino mass ordering at 2σ2\sigma CL from a combined LBL+ATM analysis if sin22θ130.02\sin^2 2\theta_{13} \gtrsim 0.02. The potential to identify the true values of sin22θ13\sin^2 2\theta_{13} and the CP-phase δcp\delta_{cp} is significantly increased through the lifting of the degeneracies. These claims are supported by a detailed simulation of the T2K (phase II) LBL experiment combined with a full three-flavor analysis of ATM data in the HyperKamiokande detector.Comment: 25 pages, 10 figure

    Kinematic Adaptations of Forward And Backward Walking on Land and in Water

    Get PDF
    The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg) were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05). At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs

    Mobile Zoos and Other Itinerant Animal Handling Events: Current Status and Recommendations for Future Policies

    Get PDF
    Mobile zoos are events in which non-domesticated (exotic) and domesticated species are transported to venues such as schools, hospitals, parties, and community centres, for the purposes of education, entertainment, or social and therapeutic assistance. We conducted literature searches and surveyed related government agencies regarding existing provisions within laws and policies, number of mobile zoos, and formal guidance issued concerning operation of such events in 74 countries or regions. We also examined governmental and non-governmental guidance standards for mobile zoos, as well as websites for mobile zoo operations, assessed promotional or educational materials for scientific accuracy, and recorded the diversity of species in use. We used the EMODE (Easy, Moderate, Difficult, or Extreme) algorithm, to evaluate identified species associated with mobile zoos for their suitability for keeping. We recorded 14 areas of concern regarding animal biology and public health and safety, and 8 areas of false and misleading content in promotional or educational materials. We identified at least 341 species used for mobile zoos. Mobile zoos are largely unregulated, unmonitored, and uncontrolled, and appear to be increasing. Issues regarding poor animal welfare, public health and safety, and education raise several serious concerns. Using the precautionary principle when empirical evidence was not available, we advise that exotic species should not be used for mobile zoos and similar itinerant events

    Cephalometric traits in children and adolescents with and without atypical swallowing : a retrospective study

    Get PDF
    Aim It has been suggested that atypical swallowing (AS) may negatively influence the skeletal and alveolar development, but its specific effects are still unclear. The aim of this work is to compare the cephalometric characteristics of children and adolescents with and without AS. Materials and methods Study design: Case-control retrospective cross-sectional study. One hundred patients with (AS group) and 100 patients without AS (control group, C) were retrospectively selected. Their cephalometric data before orthodontic treatment were compared using a 3-way ANOVA variance test to detect any differences between groups considering: the type of swallowing (AS vs C); whether or not the second dentition was completed (SDC vs SDNC); and the gender (males-M and females-F). In addition, a Student-t test for unpaired data was carried out to detect differences between M and F within the AS and C groups. Results When compared to the controls, AS patients showed a significantly decreased SNB angle (p&lt;.01), increased ANB and SN^Go. Me angles (p&lt;.0001), increased overjet and lower facial height (p&lt;.01), decreased overbite (p&lt;.0001), and increased proclination of the upper incisors. AS-SDC patients also showed significantly increased alveolar length. Within the AS and C groups, skeletal and alveolar measurements were larger in males, with higher significance in the C group, suggesting a different trend of growth in AS patients. Conclusion AS seems to affect the skeletal growth causing mandibular clockwise rotation, skeletal Class II, open bite and incisor proclination. To compensate for these effects, an increase in alveolar growth together with molar eruption seems to be induced
    corecore