182 research outputs found

    Is mammographic breast density an endophenotype for breast cancer?

    Get PDF
    Mammographic breast density (MBD) is a strong and highly heritable predictor of breastcancer risk and a biomarker for the disease. This study systematically assesses MBD as an endophenotype for breast cancer—a quantitative trait that is heritable and genetically correlated with disease risk.Using data from the family-based kConFab Study and the 1994/1995 cross-sectional Busselton HealthStudy, participants were divided into three status groups—cases, relatives of cases and controls.Participant’s mammograms were used to measure absolute dense area (DA) and percentage densearea (PDA). To address each endophenotype criterion, linear mixed models and heritability analysiswere conducted. Both measures of MBD were significantly associated with breast cancer risk in twoindependent samples. These measures were also highly heritable. Meta-analyses of both studiesshowed that MBD measures were higher in cases compared to relatives (β = 0.48, 95% CI = 0.10, 0.86and β = 0.41, 95% CI = 0.06, 0.78 for DA and PDA, respectively) and in relatives compared to controls(β = 0.16, 95% CI = −0.24, 0.56 and β = 0.16, 95% CI = −0.21, 0.53 for DA and PDA, respectively).This study formally demonstrates, for the first time, that MBD is an endophenotype for breast cancer

    Structure, Photophysics and the Order-Disorder Transition to the Beta Phase in Poly(9,9-(di -n,n-octyl)fluorene)

    Full text link
    X-ray diffraction, UV-vis absorption and photoluminescence (PL) spectroscopy have been used to study the well-known order-disorder transition (ODT) to the beta phase in poly(9,9-(di n,n-octyl)fluorene)) (PF8) thin film samples through combination of time-dependent and temperature-dependent measurements. The ODT is well described by a simple Avrami picture of one-dimensional nucleation and growth but crystallization, on cooling, proceeds only after molecular-level conformational relaxation to the so called beta phase. Rapid thermal quenching is employed for PF8 studies of pure alpha phase samples while extended low-temperature annealing is used for improved beta phase formation. Low temperature PL studies reveal sharp Franck-Condon type emission bands and, in the beta phase, two distinguishable vibronic sub-bands with energies of approximately 199 and 158 meV at 25 K. This improved molecular level structural order leads to a more complete analysis of the higher-order vibronic bands. A net Huang-Rhys coupling parameter of just under 0.7 is typically observed but the relative contributions by the two distinguishable vibronic sub-bands exhibit an anomalous temperature dependence. The PL studies also identify strongly correlated behavior between the relative beta phase 0-0 PL peak position and peak width. This relationship is modeled under the assumption that emission represents excitons in thermodynamic equilibrium from states at the bottom of a quasi-one-dimensional exciton band. The crystalline phase, as observed in annealed thin-film samples, has scattering peaks which are incompatible with a simple hexagonal packing of the PF8 chains.Comment: Submitted to PRB, 12 files; 1 tex, 1 bbl, 10 eps figure

    Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    Get PDF
    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer

    Large scale numerical investigation of excited states in poly(phenylene)

    Full text link
    A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps

    Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Get PDF
    A silicon nanocrystals (Si-ncs) conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene) (P3HT) polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2) nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction

    Tuning intermolecular interactions in di-octyl substituted polyfluorene via hydrostatic pressure

    Get PDF
    Polyfluorenes (PFs) represent a unique class of poly para-phenylene based blue-emitting polymers with intriguing structure-property relationships. Slight variations in the choice of functionalizing side chains result in dramatic differences in the inter- and intra-chain structures in PFs. We present photoluminescence (PL) and Raman scattering studies of bulk samples and thin films of dioctyl-substituted PF (PF8) under hydrostatic pressure. The bulk sample was further thermally annealed at 1.9 GPa. The PL vibronics of the as-is sample red-shift at an average rate of 26 meV/GPa. The thermally annealed sample is characterized by at least two phase transitions at 1.1 GPa and 4.2 GPa, each of which has a different pressure coefficient for PL vibronics. The Huang-Rhys factor, a measure of the electron-phonon interaction, is found to increase with increasing pressures signaling a higher geometric relaxation of the electronic states. The Raman peaks harden with increasing pressures; the intra-ring C-C stretch frequency at 1600 cm1^{-1} has a pressure coefficient of 7.2 cm1^{-1}/GPa and exhibits asymmetric line shapes at higher pressures, characteristic of a strong electron-phonon interaction. The optical properties of PF8 under high pressure are further contrasted with those of a branched side chain substituted PF.Comment: 22 pages, 10 figure

    Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study

    Get PDF
    Asbestos exposure is the main risk factor for malignant pleural mesothelioma (MPM), a rare aggressive tumor. Nevertheless, only 5–17% of those exposed to asbestos develop MPM, suggesting the involvement of other environmental and genetic risk factors. To identify the genetic risk factors that may contribute to the development of MPM, we conducted a genome-wide association study (GWAS; 370,000 genotyped SNPs, 5 million imputed SNPs) in Italy, among 407 MPM cases and 389 controls with a complete history of asbestos exposure. A replication study was also undertaken and included 428 MPM cases and 1269 controls from Australia. Although no single marker reached the genome-wide significance threshold, several associations were supported by haplotype-, chromosomal region-, gene- and gene-ontology process-based analyses. Most of these SNPs were located in regions reported to harbor aberrant alterations in mesothelioma (SLC7A14, THRB, CEBP350, ADAMTS2, ETV1, PVT1 and MMP14 genes), causing at most a 2–3-fold increase in MPM risk. The Australian replication study showed significant associations in five of these chromosomal regions (3q26.2, 4q32.1, 7p22.2, 14q11.2, 15q14). Multivariate analysis suggested an independent contribution of 10 genetic variants, with an Area Under the ROC Curve (AUC) of 0.76 when only exposure and covariates were included in the model, and of 0.86 when the genetic component was also included, with a substantial increase of asbestos exposure risk estimation (odds ratio, OR: 45.28, 95% confidence interval, CI: 21.52–95.28). These results showed that genetic risk factors may play an additional role in the development of MPM, and that these should be taken into account to better estimate individual MPM risk in individuals who have been exposed to asbestos.Giuseppe Matullo ... Lyle J. Palmer ... et al

    Germline variants are associated with increased primary melanoma tumor thickness at diagnosis

    Get PDF
    Germline genetic variants have been identified, which predispose individuals and families to develop melanoma. Tumor thickness is the strongest predictor of outcome for clinically localized primary melanoma patients. We sought to determine whether there is a heritable genetic contribution to variation in tumor thickness. If confirmed, this will justify the search for specific genetic variants influencing tumor thickness. To address this, we estimated the proportion of variation in tumor thickness attributable to genome-wide genetic variation (variant-based heritability) using unrelated patients with measured primary cutaneous melanoma thickness. As a secondary analysis, we conducted a genome-wide association study (GWAS) of tumor thickness. The analyses utilized 10 604 individuals with primary cutaneous melanoma drawn from nine GWAS datasets from eight cohorts recruited from the general population, primary care and melanoma treatment centers. Following quality control and filtering to unrelated individuals with study phenotypes, 8125 patients were used in the primary analysis to test whether tumor thickness is heritable. An expanded set of 8505 individuals (47.6% female) were analyzed for the secondary GWAS meta-analysis. Analyses were adjusted for participant age, sex, cohort and ancestry. We found that 26.6% (SE 11.9%, P = 0.0128) of variation in tumor thickness is attributable to genome-wide genetic variation. While requiring replication, a chromosome 11 locus was associated (P < 5 × 10−8) with tumor thickness. Our work indicates that sufficiently large datasets will enable the discovery of genetic variants associated with greater tumor thickness, and this will lead to the identification of host biological processes influencing melanoma growth and invasion
    corecore