191 research outputs found

    The Effect of Spent Coffee Grounds to the Growth of Solanum lycopersicum (Tomato)

    Get PDF
    Six billion tonnes of spent coffee grounds (SCG) are thrown untreated into landfills, leading the spent coffee grounds to leach organic pollutants that may potentially harm bodies of water and emit methane, a greenhouse gas, into the atmosphere. Studies have confirmed that the ratio of carbon and nitrogen (C: N) of SCG is ideal for plant fertilizers. This study focused on determining the effects of SCG on the growth of tomato plants using four parameters: the number of leaves, the average leaf surface area, and the relative growth rate. The study used an experimental research design to study the causal relationship between SCG treatments and plant growth. Tomato seeds were grouped into four and sown on separate pots. The study used three trials, each containing different weights of SCG, namely: 0 g, 5 g, 9 g, and 14 g. The SCG treatments were applied after germination using the side-dressing method. The number of expanded leaves, leaf surface area, and relative growth rate of the tomato plants were observed every five days for 45 days. The researchers found that SCG treatments that exceeded SCG-5 displayed adverse effects on the growth of the tomato. Thus, the relative growth rate and SCG treatments of over 5 g are inversely related to one another. Results show that SCG-5 had the highest positive effect on plant growth in terms of all the parameters. The researchers can then conclude that SCG-5 is an effective alternative fertilizer that improves plant growth

    Bacterial response to the soil environment

    Get PDF
    June 1969.Bibliography: page 22.Supported by the Office of Water Resources Research, Department of the Interior

    Ultra-wide Spectral Bandwidth and Enhanced Absorption in a Metallic Compound Grating Covered by Graphene Monolayer

    Get PDF
    Graphene, a two-dimensional monatomic layer of carbon material, has demonstrated as a good candidate for applications of ultrafast photodetectors, transistors, transparent electrodes, and biosensing. Recently, many studies have shown that using metallic deep gratings could enhance the absorptance of graphene of 2.3% up to 80% in the near infrared region for applications in photon detection. This paper presents utilizing a nanograting structure, namely, a compound metallic grating could greatly enhance the absorptance of graphene to 100% and widen its spectral bandwidth to 600 nm, which are greater than those of previous work. The study also showed that the absorptance spectrum is insensitive to angles of incidence. Furthermore, the proposed graphene-covered compound grating might bring a lot of benefits for graphene designs-based optical and optoelectronic devices

    Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish

    Get PDF
    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the effect on aquatic organisms of electromagnetic fields (EMF) created by the projects. The submerged electrical generator will emit an EMF into the surrounding water, as will underwater cables used to transmit electricity from the generator to the shore, between individual units in an array (inter-turbine cables), and between the array and a submerged step-up transformer. The electric current moving through these cables will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of fish and benthic invertebrates (Gill et al. 2005, 2009). It is known that numerous marine and freshwater organisms are sensitive to electrical and magnetic fields, often depending on them for such diverse activities as prey location and navigation (DOE 2009; Normandeau et al. 2011). Despite the wide range of aquatic organisms that are sensitive to EMF and the increasing numbers of underwater electrical transmitting cables being installed in rivers and coastal waters, little information is available to assess whether animals will be attracted, repelled, or unaffected by these new sources of EMF. This knowledge gap is especially significant for freshwater systems, where electrosensitive organisms such as paddlefish and sturgeon may interact with electrical transmission cables. We carried out a series of laboratory experiments to test the sensitivity of freshwater fish and invertebrates to the levels of EMF that are expected to be produced by HK projects in rivers. In this context, EM fields are likely to be emitted primarily by generators in the water column and by transmission cables on or buried in the substrate. The HK units will be located in areas of high-velocity waters that are used as only temporary habitats for most riverine species, so long-term exposure of fish and benthic invertebrates to EMF is unlikely. Rather, most aquatic organisms will be briefly exposed to the fields as they drift downstream or migrate upstream. Because the exposure of most aquatic organisms to EMF in a river would be relatively brief and non-lethal, we focused our investigations on detecting behavioral effects. For example, attraction to the EM fields could result in prolonged exposures to the fields or the HK rotor. On the other hand, avoidance reactions might hinder upstream migrations of fish. The experiments reported here are a continuation of studies begun in FY 2010, which focused on the potential effects of static magnetic fields on snails, clams, and fathead minnows (Cada et al. 2011). Those experiments found little indication that the behaviors of these freshwater species were altered by the static magnetic fields that would be created by submerged, direct current (DC)-transmitting electrical cables expected to be used by the HK developers. Laboratory experiments in FY 2011 examined the responses of additional fish species (sunfish, striped bass, and channel catfish) to the static magnetic fields. In addition, the effects of variable magnetic fields (that would be created by the HK generators and AC-transmitting cables) on swimming behavior of two electrosensitive fish species (paddlefish and lake sturgeon) were studied

    Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon

    Get PDF
    With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises

    Estimating Fuel Cycle Externalities: Analytical Methods and Issues, Report 2

    Get PDF
    The activities that produce electric power typically range from extracting and transporting a fuel, to its conversion into electric power, and finally to the disposition of residual by-products. This chain of activities is called a fuel cycle. A fuel cycle has emissions and other effects that result in unintended consequences. When these consequences affect third parties (i.e., those other than the producers and consumers of the fuel-cycle activity) in a way that is not reflected in the price of electricity, they are termed ''hidden'' social costs or externalities. They are the economic value of environmental, health and any other impacts, that the price of electricity does not reflect. How do you estimate the externalities of fuel cycles? Our previous report describes a methodological framework for doing so--called the damage function approach. This approach consists of five steps: (1) characterize the most important fuel cycle activities and their discharges, where importance is based on the expected magnitude of their externalities, (2) estimate the changes in pollutant concentrations or other effects of those activities, by modeling the dispersion and transformation of each pollutant, (3) calculate the impacts on ecosystems, human health, and any other resources of value (such as man-made structures), (4) translate the estimates of impacts into economic terms to estimate damages and benefits, and (5) assess the extent to which these damages and benefits are externalities, not reflected in the price of electricity. Each step requires a different set of equations, models and analysis. Analysts generally believe this to be the best approach for estimating externalities, but it has hardly been used! The reason is that it requires considerable analysis and calculation, and to this point in time, the necessary equations and models have not been assembled. Equally important, the process of identifying and estimating externalities leads to a number of complex issues that also have not been fully addressed. This document contains two types of papers that seek to fill part of this void. Some of the papers describe analytical methods that can be applied to one of the five steps of the damage function approach. The other papers discuss some of the complex issues that arise in trying to estimate externalities. This report, the second in a series of eight reports, is part of a joint study by the U.S. Department of Energy (DOE) and the Commission of the European Communities (EC)* on the externalities of fuel cycles. Most of the papers in this report were originally written as working papers during the initial phases of this study. The papers provide descriptions of the (non-radiological) atmospheric dispersion modeling that the study uses; reviews much of the relevant literature on ecological and health effects, and on the economic valuation of those impacts; contains several papers on some of the more complex and contentious issues in estimating externalities; and describes a method for depicting the quality of scientific information that a study uses. The analytical methods and issues that this report discusses generally pertain to more than one of the fuel cycles, though not necessarily to all of them. The report is divided into six parts, each one focusing on a different subject area

    The Maine Tidal Power Initiative: Transdisciplinary sustainability science research for the responsible development of tidal power

    Get PDF
    The Maine Tidal Power Initiative (MTPI), an interdisciplinary team of engineers, marine scientists, oceanographers, and social scientists, is using a transdisciplinary sustainability science approach to collect biophysical and social data necessary for understanding interactions between human and natural systems in the context of tidal power development in Maine. MTPI offers a unique opportunity to better understand how group structure and process influence outcomes in transdisciplinary sustainability science research. Through extensive participant observation and semi-structured interviews we: (1) describe MTPI’s organizational structure; (2) examine MTPI’s research approach and engagement with stakeholders from different sectors of society (i.e., industry, government, and the local community); and (3) identify challenges and opportunities for involving different disciplinary expertise and diverse stakeholders in transformational sustainability science research. We found that MTPI’s holistic mission, non-hierarchical structure, and iterative stakeholder engagement process led to important benefits and significant challenges. Positive outcomes include knowledge development, a transferable research framework, shared resources, personal reward, and a greater understanding of the local environment and community. Challenges identified include balancing diverse interests and priorities, maintaining engagement, managing stakeholder relationships, and limited resources. Lessons learned from the process of integrative collaborative research in Maine can offer guidance on what should be considered when carrying out similar transdisciplinary sustainability science projects in other research contexts
    • …
    corecore