6 research outputs found

    Thinning Effect of C Sequestration along an Elevation Gradient of Mediterranean Pinus spp. Plantations

    Get PDF
    Forests are key elements in mitigating the effects of climate change due to the fact of their carbon sequestration capacity. Forest management can be oriented to optimise the carbon sequestration capacity of forest stands, in line with other productive objectives and the generation of ecosystem services. This research aimed to determine whether thinning treatments have a positive influence on the growth patterns of some of the main Mediterranean pine species and, therefore, on their Carbon (C) fixation capacity, both in terms of living biomass and soil organic carbon. The results obtained show that C sequestration capacity (biomass and SOC) increased at higher thinning intensities due to the induced alterations in tree growth patterns. We observed almost a 1.5-fold increase in P. nigra and P. sylvestris, respectively, and over a two-fold increase in P. pinaster under heavy thinning treatments; SOC stocks were affected by the intensity of the thinning treatments. These results can contribute to improving silvicultural practices aimed at C sequestration in forest plantations located in dry areas of the Mediterranean

    Planted or Natural Pine Forests, Which One Will Better Recover after Drought? Insights from Tree Growth and Stable C and H Isotopes

    Get PDF
    Increasing intensity and frequency of droughts are leading to forest dieback, growth decline and tree mortality worldwide. Reducing tree-to-tree competition for water resources is a primary goal for adaptive climate silviculture strategies, particularly in reforested areas with high planting density. Yet, we need better insights into the role of stand type (i.e., natural forests versus plantations) on the resilience of pine forests to droughts across varying time scales. In this study, we combined dendrochronological data and stable C (δ13C) and H (δ2H) isotopes measured in tree-ring wood as well as in specific wood chromatographically isolated compounds to investigate contrasting responses to drought of natural versus planted stands of two representative pine species, i.e., Pinus pinaster and Pinus nigra in southeastern Europe. Natural stands exhibited about two-fold increase in tree-ring growth in average (basal area at 20 years-BAI20) as compared to planted stands. A response function analysis showed contrasting seasonal growth patterns for both species, which were related to monthly mean temperature and precipitation. Both stand type and species variables influenced growth resilience indices. Both pine species revealed contrasting resilience patterns among forest types; whereas planted stands seemed to be less sensitive to yearly droughts as determined by a higher recovery index (CRc) for P. pinaster, the contrary was found in the case of P. nigra. On the other hand, while resistance CRT and resilience CRS indices were higher for planted than natural forests in the case of P. pinaster, little differences were found for P. nigra. Beyond comparisons, carbon stable isotopes shed lights on the role of forest types in dry sites, being δ13C consistently lower in natural than in planted forests for both pine species (p < 0.05). We concluded that planted forest assimilated more carbon as per unit of water used than natural stands in response to droughts. Both δ13C and δ2H isotopic signals were positively correlated for both species for planted forests. However, a lack of correlation was evidenced for natural stands. Consistent with δ13C observations, δ2H concentrations in woody phenolic compounds (guaiacol and oleic acid) revealed contrasting patterns among forest types. This puts forward that δ2H concentrations in woody phenolic compounds (rather than in woody tree ring) accounts for other confounding factors in tree ring formation that can be associated with forest type. Our results highlight the value of stable isotope approaches versus conventional dendrochronological tools in drought studies and call for the consideration of forest type as an endogenous aspect defining the vulnerability of pine forests to climate

    Carbon Sequestration in Carob (Ceratonia siliqua L.) Plantations under the EU Afforestation Program in Southern Spain Using Low-Density Aerial Laser Scanning (ALS) Data

    Get PDF
    Climate change is one of the environmental issues of global dominance and public opinion, becoming the greatest environmental challenge and of interest to researchers. In this context, planting trees on marginal agricultural land is considered a favourable measure to alleviate climate change, as they act as carbon sinks. Aerial laser scanning (ALS) data is an emerging technology for quantitative measures of C stocks. In this study, an estimation was made of the gains of C in biomass and soil in carob (Ceratonia siliqua L.) plantations established on agricultural land in southern Spain. The average above-ground biomass (AGB) corresponded to 85.5% of the total biomass (average 34.01 kg tree−1), and the root biomass (BGB) was 14.5% (6.96 kg tree−1), with a BGB/AGB ratio of 0.20. The total SOC stock in the top 20 cm of the soil (SOC-S20) was 60.70 Mg C ha−1 underneath the tree crown and 43.63 Mg C ha−1 on the non-cover (implantation) area for the C. siliqua plantations. The allometric equations correlating the biomass fractions with the dbh and Ht as independent variables showed an adequate fit for the foliage (Wf, R2adj = 0.70), whereas the fits were weaker for the rest of the fractions (R2adj < 0.60). The individual trees were detected using colour orthophotography and the tree height was estimated from 140 crowns previously delineated using the 95th percentile ALS-metric. The precision of the adjusted models was verified by plotting the correlation between the LiDAR-predicted height (HL) and the field data (R2adj = 0.80; RMSE = 0.53 m). Following the selection of the independent variable data, a linear regression model was selected for dbh estimation (R2adj = 0.64), and a potential regression model was selected for the SOC (R2adj = 0.81). Using the segmentation process, a total of 8324 trees were outlined in the study area, with an average height of 3.81 m. The biomass C stock, comprising both above- and below-ground biomass, was 4.30 Mg C ha−1 (50.67 kg tree−1), and the SOC20-S was 37.45 Mg C ha−1. The carbon accumulation rate in the biomass was 1.94 kg C tree−1 yr−1 for the plantation period. The total C stock (W-S and SOC20-S) reached 41.75 Mg ha−1 and a total of 4,091.5 Mg C for the whole plantation. Gleaned from the synergy of tree cartography and these models, the distribution maps with foreseen values of average C stocks in the planted area illustrate a mosaic of C stock patterns in the carob tree plantation

    Long-Term Carbon Sequestration in Pine Forests under Different Silvicultural and Climatic Regimes in Spain

    Get PDF
    Proactive silviculture treatments (e.g., thinning) may increase C sequestration contributing to climate change mitigation, although, there are still questions about this effect in Mediterranean pine forests. The aim of this research was to quantify the storage of biomass and soil organic carbon in Pinus forests along a climatic gradient from North to South of the Iberian Peninsula. Nine experimental Pinus spp trials were selected along a latitudinal gradient from the pre-Pyrenees to southern Spain. At each location, a homogeneous area was used as the operational scale, and three thinning intensity treatments: unthinned or control (C), intermediate thinning (LT, removal of 30–40% of the initial basal area) and heavy thinning (HT, removal of 50–60%) were conducted. Growth per unit area (e.g., expressed as basal area increment-BAI), biomass, and Soil Organic Carbon (SOC) were measured as well as three sets of environmental variables (climate, soil water availability and soil chemical and physical characteristics). One-way ANOVA and Structural Equation Modelling (SEM) were used to study the effect of thinning and environmental variables on C sequestration. Biomass and growth per unit area were higher in the control than in the thinning treatments, although differences were only significant for P. halepensis. Radial growth recovered after thinning in all species, but it was faster in the HT treatments. Soil organic carbon (SOC10, 0–10 cm depth) was higher in the HT treatments for P. halepensis and P. sylvestris, but not for P. nigra. SEM showed that Pinus stands of the studied species were beneficed by HT thinning, recovering their growth quickly. The resulting model explained 72% of the variation in SOC10 content, and 89% of the variation in silvicultural condition (basal area and density) after thinning. SOC10 was better related to climate than to silvicultural treatments. On the other hand, soil chemical and physical characteristics did not show significant influence over SOC10- Soil water availability was the latent variable with the highest influence over SOC10. This work is a new contribution that shows the need for forest managers to integrate silviculture and C sequestration in Mediterranean pine plantations

    Integrating Dendrochronological and LiDAR Data to Improve Management of <i>Pinus canariensis</i> Forests under Different Thinning and Climatic Scenarios

    No full text
    Thinning focused on achieving growth and diameter management objectives has typically led to stands with reduced climate sensitivity compared to unthinned stands. We integrated dendrochronological with Airborne Laser Scanner (LiDAR) data and growth models to assess the long-term impact of thinning intensity on Canary pine (Pinus canariensis) radial growth. In 1988, 18 permanent treatment units were established in 73-year-old Canary pine plantations and three thinning treatments were applied (C–control-unthinned; 0% basal area removal; MT–moderate thinning: 10% and 15% basal area removal, and HT–heavy thinning: 46% and 45% basal area removal on the windward and leeward slopes, respectively). Dendrochronological data were measured in 2022 and expressed as basal area increment (BAI). The impact of climate on growth was examined by fitting linear regression models considering two different Representative Concentration Pathway (RCP) climate scenarios, RCP 2.6 and RCP 4.5. Finally, LiDAR data were used for standing segmentation to evaluate changes in overall growth under different climatic scenarios. The LiDAR–stand attributes differed between aspects. The BAI of the most recent 20 years (BAI20) after thinning was significantly higher for the moderate and heavy treatments on the leeward plots (F = 47.31, p < 0.001). On the windward plots, BAI decreased after moderate thinning. Considerable thinning treatments resulted in stronger changes in growth when compared to RCP climatic scenarios. From a silviculture perspective, the mapping of canopy structure and growth response to thinning under different climatic scenarios provides managers with opportunities to conduct thinning strategies for forest adaptation. Combining dendrochronological and LiDAR data at a landscape scale substantially improves the value of the separate datasets as forecasted growth response maps allow improving thinning management plans

    Developing alternatives to adaptive silviculture: Thinning and tree growth resistance to drought in a Pinus species on an elevated gradient in Southern Spain

    No full text
    15 Pags.- 7 Fgis.- 3 Tabls.Forest plantations are more vulnerable to the stress induced by biotic and abiotic factors than are naturally regenerated forests. These effects can be aggravated by a lack of management in large reforestation areas, and thinning could, therefore, help trees to reduce dieback and tree mortality related to drought. We address this question using a dendrochronology and modelling approach to improve the understanding of the growth response of high-density planted pine forests to thinning in drought-prone areas of Southern Spain. An experimental trial was, therefore, carried out with three species (Pinus halepensis, P. nigra, and P. sylvestris) and three thinning treatments (unthinned, moderate, and heavy thinning), after which growth-climate relationships and drought vulnerability indices were assessed. Three separate generalized linear mixed-effects models (GLMM), one for each species and location, were fitted using BAI as the response variable, and post-thinning growth trajectories and drought vulnerability indices were also simulated. Ten-year basal area showed strong growth responses following the thinning treatment (BAI10, 72% for P. halepensis and 50% for P. sylvestris as regards heavy thinning and 51% for P. nigra as regards moderate thinning), with different responses to precipitation and temperature according to species and thinning intensity. The significant effects of thinning on drought vulnerability indices indicated that the thinning treatments had a positive effect, irrespective of the pine species, although this was more evident in the case of P. sylvestris (recovery F = 28.10, p < 0.001, and resilience F = 35.21, p < 0.001 respectively) and P. halepensis (recovery F = 10.97, p < 0.001 and resilience F = 16.91, p < 0.001). The models also showed that climatic effect was greater for P. nigra than for P. sylvestris. The simulation also provides information on the long-term effectiveness of thinning; in P. sylvestris the effect of thinning tended to be attenuated after 20 years, but this was not the case of P. nigra and P. halepensis. High values of modelled resilience were found after thinning, with a time to recovery of between two and four years after drought depending on thinning intensity. Our findings showed the advantages of thinning for growth under different climatic constraints, particularly drought. This work is a new contribution that demonstrates the urgent need for forest managers to take steps in order to help drought-vulnerable Mediterranean pine plantations to adapt to the risks posed by climate change.This research was collaboratively funded by the following projects: SILVADAPT.NET (RED2018-102719-T), EVIDENCE (Ref: 2822/2021) and REMEDIO (PID2021-128463OB-I00). We acknowledge the institutional support of the University of Cordoba-Campus de Excelencia CEIA3, Mediterranean Forest Global Change Observatory for its support through the “Scientific Infrastructures for Global Change Monitoring and Adaptation in Andalusia (INDALO) – LIFEWATCH-2019-04-AMA-01” project, and Instituto Interuniversitario del Sistema Tierra de Andalucía (IISTA) and the Sierra Nevada Global Change Observatory, throught the Programa de Gestión de la Agencia de Medio Ambiente y Agua de Andalucía and the collaboration of environmental agents from Sierra Nevada National & Nature Park.Peer reviewe
    corecore